

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

• 1

AD-A143 939

FARMINGTON RIVER BASIN
HARWINTON, CONNECTICUT

BRISTOL RESERVOIR NO.4 DAM CT 00364

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DITIC FILE COPY

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS

WALTHAM, MASS. 02154

This document to the for public release distribution is unknoted.

JUNE 1981

84 08 07 049

F

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
REPORT NUMBER	3. RECIPIENT'S CATALOG NUMBER
CT 00364 AU TITIST.	77
TITLE (and Subtitle)	L TYPE OF REPORT & PERIOD COVERED
Bristol Reservoir No.4 Dam	INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
LAUTHORIAN U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	8. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINEERS	June 1981
NEW ENGLAND DIVISION, NEDED 424 TRAPELO ROAD, WALTHAM, MA. 02254	. 75
424 IRAPELU ROAD, WALITAM, IVA. UZZO4 MONITORING AGENCY NAME & ADDRESSIT different from Controlling Office)	
	UNCLASSIFIED
	ISA. DECLASSIFICATION/DOWNGRADING
APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED	
7. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, If different h	real Report)
Cover program reads: Phase I Inspection Report, Nathowever, the official title of the program is: Nati Non-Federal Dams; use cover date for date of repor	onal Program for Inspection of
Cover program reads: Phase I Inspection Report, Nathowever, the official title of the program is: Nati	onal Program for Inspection of t.

width of 8 feet, and a total length of 970 feet including a 29.7 foot long concrete overflow spillway. Based on the visual inspection, the dam is judged to be in fair condition. The dam is classified as "Intermediate" in size with a "Significant" hazard potential. A test flood equal to \(\frac{1}{2} \) the PMF was selected.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM, MASSACHUSETTS 02254

ATTENTION OF:

NEDED

JUL 28 1931

Honorable William A. O'Neill Governor of the State of Connecticut State Capitol Hartford, Connecticut 06115

Dear Governor O'Neill:

Inclosed is a copy of the Bristol Reservoir No. 4 Dam (CT-00364) Phase I Inspection Report, prepared under the National Program for Inspection of Non-Federal Dams. This report is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. I approve the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions ${\bf r}$ taken to implement them. This follow-up action is vitally important.

Copies of this report have been forwarded to the Department of Environmental Protection, and to the owner, Bristol Water Department, Bristol, CT. Copies will be available to the public in thirty days.

I wish to thank you and the Department of Environmental Protection for your cooperation in this program.

Sincerely.

Inc1 As stated C. E. EDGAR, III

Colonel, Corps of Engineers Commander and Division Engineer

Accession For NTIS GRA&I DOIG TAB خيريم جديين

Dist

BRISTOL RESERVOIR NO. 4 DAM CT 00364

FARMINGTON RIVER BASIN HARWINTON, CONNECTICUT

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

IDENTIFICATION NO:CT 00364	
NAME OF DAM: Bristol Reservoir No. 4 Dam	
Harwinton	
COUNTY AND STATE: Litchfield County, Connecticut	
Poland River STREAM:	
DATE OF INSPECTION: April 28, 1981	- -

BRIEF ASSESSMENT

Bristol Reservoir No. 4 Dam is a storage reservoir for public water supply owned by the Bristol Water Department. The dam consists of an earth embankment structure with a maximum height of 40 feet, a top width of 8 feet, and a total length of 970 feet including a 29.7 foot long concrete overflow spillway. The outlet works consist of a 20-inch cast iron pipe through the dam with an upstream gatehouse.

Based on the visual inspection, the dam is judged to be in fair condition. Features that could affect the future integrity of the dam are the downstream seepage, trees growing adjacent to the downstream toe and in the auxiliary spillway channel, continued undermining of the spillway apron and continued deterioration of the outlet works endwall.

The dam is classified as "Intermediate" in size with a "Significant" hazard potential. A Test Flood equal to one-half the Probable Maximum Flood (1/2 PMF) was selected in accordance with the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams. The Test Flood inflow of 1,840 cfs results in a

routed outflow of 1,410 cfs that would overtop the dam by 0.2 feet.

The spillway capacity without flashboards in place is 760 cfs or 54 percent of the Test Flood routed outflow.

It is recommended that the owner retain the services of a qualified, registered engineer to investigate the downstream seepage and the undermining of the spillway apron and to perform a detailed hydraulic and hydrologic analysis. In addition, flash-boards should be removed from the spillway, trees should be removed from downstream of the dam and in the auxiliary spillway channel, the outlet works endwall should be repaired or replaced, a program of technical inspections should be instituted, an Operations and Maintenance Manual should be prepared, and a downstream warning system should be developed.

The owner should implement these recommendations as described herein and in greater detail in Section 7 of this report within one year of receipt of this Phase I Inspection Report.

Ronald G. Litke, P.E.

Project Engineer

Roald Haestad President

rushed

This Phase I Inspection Report on Bristol Reservoir No.4 Dam (CT-00364) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

JOSEPH W. FINEGAN, JR. MEMBER

Water Control Branch Engineering Division

Chance Continua

ARAMAST MAHTESIAN, MEMBER Geotechmical Engineering Branch Engineering Division

CARNEY M. TERZIAN, CHAIRMAN

Design Branch

Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR

Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the

condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety of the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

SECTION	PAGES
LETTER OF TRANSMITTAL	i
BRIEF ASSESSMENT	ii - iii
REVIEW BOARD PAGE	iv
PREFACE	v - vi
TABLE OF CONTENTS	vii - ix
OVERVIEW PHOTO	x
LOCATION PLAN	xi
INDEX TO REPORT	
INDEX TO REPORT	
DESCRIPTION	PAGES
1. PROJECT INFORMATION	1 - 9
1.1 GENERAL	1
a. AUTHORITYb. PURPOSE OF INSPECTION	1 1
1.2 DESCRIPTION OF PROJECT	2 - 5
a. LOCATION b. DESCRIPTION OF DAM AND APPURTENANCES c. SIZE CLASSIFICATION d. HAZARD CLASSIFICATION e. OWNERSHIP f. OPERATOR g. PURPOSE OF DAM h. DESIGN AND CONSTRUCTION HISTORY i. NORMAL OPERATIONAL PROCEDURE	2 2 - 3 3 - 4 4 4 5 5 5
1.3 PERTINENT DATA	6 - 9
2. ENGINEERING DATA	10 - 11
2.1 DESIGN DATA	10
2.2 CONSTRUCTION DATA	10
2.3 OPERATION DATA	10 - 11
2.4 EVALUATION OF DATA	. 11

DES	SCRIPTION	PAGES
3.	VISUAL INSPECTION	12 - 15
	3.1 FINDINGS	12 - 15
	 a. GENERAL b. DAM c. APPURTENANT STRUCTURES d. RESERVDIR AREA e. DOWNSTREAM CHANNEL 	12 12 - 13 13 - 14 14 15
	3.2 EVALUATION	15
4.	OPERATIONAL AND MAINTENANCE PROCEDURES	16
	4.1 OPERATIONAL PROCEDURES	16
	a. GENERALb. DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT	16 16
	4.2 MAINTENANCE PROCEDURES	16
	a. GENERALb. OPERATING FACILITIES	16 16
	4.3 EVALUATION	16
5,	EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES	17 - 19
	5.1 GENERAL	17
	5.2 DESIGN DATA	18
	5.3 EXPERIENCE DATA	18
	5.4 TEST FLOOD ANALYSIS	18 - 19
	5.5 DAM FAILURE ANALYSIS	19
6.	EVALUATION OF STRUCTURAL STABILITY	20
	6.1 VISUAL OBSERVATION	20
	6.2 DESIGN AND CONSTRUCTION DATA	20
	6.3 POST-CONSTRUCTION CHANGES	20
	6 A SEISMIC STABILITY	20

DES	SCRIPTION	PAGES
7.	ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	21 - 23
	7.1 DAM ASSESSMENT	21
	a. CONDITIONb. ADEQUACY OF INFORMATIONc. URGENCY	21 21 21
	7.2 RECOMMENDATIONS	22
	7.3 REMEDIAL MEASURES	22
	a. OPERATION AND MAINTENANCE PROCEDURES	22
	7.4 ALTERNATIVES	23
	INDEX TO APPENDIXES	
APP	PENDIX DESCRIPTION	PAGES
	A INSPECTION CHECKLIST	A-1 - A-8
	B ENGINEERING DATA	B-1 - B-9
	C PHOTOGRAPHS	C-1 - C-9
	D HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1 - D-48
	T INCORMATION AS CONTAINED IN THE	

NATIONAL INVENTORY OF DAMS

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

BRISTOL RESERVOIR NO. 4 DAM

PROJECT INFORMATION SECTION 1

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Roald Haestad, Inc., has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Roald Haestad, Inc. under a letter of March 30, 1981, from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0048 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection

The purposes of the program are to:

- Perform technical inspection and evaluation of nonfederal dams to identify conditions requiring correction in a timely manner by non-federal interest.
- Encourage and prepare the States to quickly initiate effective dam inspection programs for non-federal dams.
- To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location

The dam is located on the Poland River adjacent to Connecticut Route 72 approximately 2.5 miles south of the intersection of Route 72 with Connecticut Route 4, in the Town of Harwinton, Connecticut. The dam is shown on the Thomaston Quadrangle map having coordinates of latitude N41°-44.5' and longitude W73°-01.3'.

b. Description of Dam and Appurtenances

The dam consists of an earth embankment structure with a maximum height of 40 feet and a total length of 970 feet including a 29.7 foot long overflow spillway. In plan the dam essentially has three angle points along its axis and roughly takes the shape of the letter "W". Approximately 285 feet from the left end of the dam, the axis turns approximately 90° to the right and then proceeds approximately 335 feet to a second angle point. The overflow spillway is located near the center of this 335 foot long section. At the second angle point the axis turns approximately 45° to the left and proceeds 160 feet to the third angle point where it deflects approximately 45° back to the right and continues for 190 feet to the right abutment. The outlet works are located 130 feet from the right abutment in this final section of the dam. See Figure 2, page B-1 in Appendix B.

The dam, originally constructed in 1905 - 1906, consisted of an earth embankment with a maximum height of 33 feet, an upstream slope of 1-1/2 horizontal to 1 vertical protected by slope paving on a gravel base, a downstream slope of 2 horizontal to 1 vertical and a crest width of 14 feet. A stone masonry corewall extended

from "good bottom" to 3 feet below the crest of the dam. In 1910 the dam was raised 7 feet by constructing a concrete corewall on the existing stone masonry one and completing the embankments. The present dam has a crest width of 8 feet and a downstream slope of 2 horizontal to 1 vertical for the upper 15 feet and 3 horizontal to 1 vertical for the remaining slope. At the upstream edge of the crest the 1-1/2 horizontal to 1 vertical upstream slope meets the concrete corewall approximately 2.5 - 3 feet below the crest of the dam. See pages B-3 - B-6 in Appendix B.

The overflow spillway consists of a concrete broad-crested weir with concrete training walls. The top of the dam is 4 feet above the top of the spillway and 2.9 feet above the top of 13-inch high flashboards which are normally in place. The flashboards consist of removable timber planks resting against steel pins in the spillway crest. A steel beam and wood deck bridge spans the spillway. The spillway discharge normally flows through a narrow channel excavated into ledge which discharges into a natural streambed below the outlet works. Large spillway flows discharge through an auxiliary channel approximately 100 feet downstream of the dam. See Figure 2, page B-1 in Appendix B.

The outlet works consist of a 20-inch cast iron pipe through the embankment with an upstream gatehouse. There are 3 intake gate valves at varying elevations on the upstream wall of the gatehouse and an outlet sluice gate on the downstream wall.

c. Size Classification - "Intermediate"

According to the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams, a dam is classified as "Intermediate" in size if the height is between 40 feet and 100 feet or the dam impounds between 1,000 Acre-Feet and 50,000 Acre-Feet. The dam has a maximum height of 40 feet and a maximum storage capacity of 945 Acre-Feet. Therefore the dam is classified as "Intermediate" in size based on the height of 40 feet.

d. Hazard Classification - "Significant"

Based on the Corps of Engineers' Recommended Guidelines

for Safety Inspection of Dams, the hazard classification of the

dam is "Significant". A dam failure analysis indicates that Connecticut Route 72 located downstream of the dam would be flooded

for a distance of about 2 miles by depths of up to 5 feet as a

result of the dam failure. Further downstream the flood waters

would overtop Route 72 at several locations, Preston Road and the

dam at Bristol Reservoir No. 3 (incorrectly labeled Bristol Reservoir No. 2 on the U.S.G.S. Quadrangle Sheet). The lower portions

of a factory complex consisting of several interconnecting buildings

located 3 miles below the dam would also be inundated to a maximum

depth of about 1 foot.

The dam is classified as "Significant" hazard potential because of the possible loss of a few lives and downstream property damage should the dam fail.

e. Ownership

Bristol Water Department 119 Riverside Street Bristol, Connecticut 06010 John Burns, Superintendent (203) 582-7431

f. Operator

Leonard Valentino
Bristol Filter Plant
Off of Clark Avenue
Bristol, Connecticut 06010
(203) 583-6504

g. Purpose of Dam

The dam impounds Bristol Reservoir No. 4, a storage reservoir for public water supply for the Bristol Water Department.

h. Design and Construction History

The dam was constructed in 1905 - 1906 as shown on plans prepared by Freeman C. Coffin, Civil and Hyd. Eng. The dam was raised 7 feet in 1910 - 1911 as shown on plans prepared by Metcalf and Eddy, Consulting Engineers. See pages B-3 - B-6 in Appendix B.

i. Normal Operational Procedures

Water is drawn from the reservoir by opening one of the intake gate valves in the gatehouse, as required to supply water to a downstream distribution reservoir.

1.3 Pertinent Data

a. Drainage Area

The drainage area consists of 1.7 square miles of "rolling" wooded hills with very sparse development. Most of the drainage area is owned by the Bristol Water Department.

b. Discharge at Damsite

Discharge at the damsite is over a 29.7 foot long concrete spillway. The outlet works consist of a 20" cast iron pipe through the dam with an upstream gatehouse. The gatehouse contains 3 intake gate valves at varying elevations and an outlet sluice gate.

ı.	Outlet Works (conduits) Size:	12"	12"	20"
	Invert Elevation at Gatehouse:	836.5+	826.5 <u>+</u>	816.0*
	Discharge Capacity:	16 cfs	17 cfs	60 cfs
2.	Maximum Known Flood at Damsite:	: Unknown		
3.	Ungated Spillway Capacity at Top of Dam: Elevation:	760 cfs 856.0	480 856	cfs**
4.	Ungated Spillway Capacity at Test Flood Elevation: Elevation:	820 856.2		
5.	Gated Spillway Capacity at Normal Pool Elevation: Elevation:	N/A N/A		
6.	Gated Spillway Capacity at Test Flood Elevation: Elevation:	N/A N/A		
7.	Total Spillway Capacity at Test Flood Elevation: Elevation:	820 cfs 856.2		
8.	Total Project Discharge at Top of Dam: Elevation:	760 cfs 856.0	480 856	cfs** .0
9.	Total Project Discharge at Test Flood Elevation:	1410 cfs 856.2		

^{*}At outlet

^{**}with 13-inch Flashboards

c.	Ele	vation - Feet Above Mean Sea Level	(NGVD)
	1.	Streambed at Toe of Dam:	816.0
	2.	Bottom of Cutoff:	Unknown
	3.	Maximum Tailwater:	N/A
	4.	Normal Pool:	853.1 (with flashboards)
	5.	Full Flood Control Pool:	N/A
	6.	Spillway Crest:	852.0
	7.	Design Surcharge - Original Design	: Unknown
	8.	Top of Dam:	856.0
	9.	Test Flood Surcharge:	856.2
d.	Res	ervoir - Length in Feet	
	1.	Normal Pool:	4,100'
	2.	Flood Control Pool:	N/A
	3.	Spillway Crest Pool:	4,100'
	4.	Top of Dam:	4,400'
	5.	Test Flood Pool:	4,400'
e.	Sto	rage - Acre-feet	
	1.	Normal Pool:	807 (with flashboards)
	2.	Flood Control Pool:	N/A
	3.	Spillway Crest Pool:	764
	4.	Top of Dam:	945
	5.	Test Flood Pool:	1000
f.	Res	ervoir Surface - Acres	
	1.	Normal Pool:	45 (with flashboards)
	2.	Flood-Control Pool:	N/A
	3.	Spillway Crest:	43
	4.	Test Flood Pool:	50
	5.	Top of Dam:	50

Dam g.

1. Type: Earth embankment, at upstream edge of crest

corewall meets upstream slope 2.5' - 3' below

the crest.

970' 2. Length:

40' 3. Height:

8 foot earth embankment, 16-inch corewall 4. Top Width:

Upstream - 1.5 horizontal to 1 vertical 5. Side Slopes:

Downstream - 2 horizontal to 1 vertical (upper 15')

3 horizontal to 1 vertical (remaining height)

6. Zoning: Embankment upstream of corewall to be "selected

material, the most impervious available"; downstream of corewall to be "selected material, the

most porous available"

7. Impervious Core: Lower portion rubble masonry; upper 10' of con-

crete

8. Cutoff: Rubble masonry corewall extended to "good bottom"

Grout Curtain: 9. None

10. Other:

Diversion and Regulating Tunnel - N/A

i. Spillway

1. Type: Concrete broad-crested weir

2. Length of Weir: 29.7

3. Crest Elevation
 with Flashboards: 853.3
 without Flashboards: 852

4. Gates: N/A

5. Upstream Channel: Concrete training walls

5. Downstream Channel:

Below concrete apron, channel is in ledge.

Heavy riprap placed on channel banks where
channel bends back toward downstream toe.

7. General: Normal spillway discharge flows through narrow channel excavated in ledge, large discharges flow through auxiliary channel.

j. Regulating Outlets

1. Invert at Gatehouse: 836.5 826.5 816*

2. Size: 12" 12" 20"

3. Description: 2-12" and 1-20" cast iron pipe from upstream slope to gatehouse; 1-20" cast iron pipe from the gatehouse to downstream toe

4. Control Mechanism:

3 manually operated intake gate valves and
1 manually operated outlet sluice gate in
upstream gatehouse

5. Other: Maximum capacity - 60 cfs

*at outlet

SECTION 2

2.1 Design Data

Design data for the original construction of the dam consists of two drawings, one entitled "Bristol Water Works, Drawings of Dam, Gridley Pond" and the other entitled "Bristol Water Works, Dam at Gridley Pond, Sections Through Embankment and Drawings of Gate House". Both drawings were dated March 1905 and were prepared by Freeman C. Coffin, Civil and Hyd. Eng., 53 State Street, Boston. Design data for the raising of the dam consisted of two drawings prepared for the Bristol Water Company by Metcalf and Eddy, Consulting Engineers, Boston, Massachusetts. One drawing dated August 20, 1910 is entitled "Plan for Raising Dam No. 4 to 7 Ft. Above Its Present Location". The other drawing is entitled "Spillway and Channel Walls after Raising Water Level 7 Feet" and is dated September 16, 1910.

2.2 Construction Data

Construction data consisted of the above-noted plans. The "Plan for Raising Dam No. 4" was marked up in red pencil to indicate the conditions when work was stopped October 20, 1910. The spillway, the upstream face of the exposed portion of the corewall and the gatehouse were reportedly gunited about 8 years ago by Penetryn Systems, Inc.

2.3 Operation Data

Lake levels are recorded once a month, and do not necessarily coincide with maximum water levels. The amount of flow over the spillway during the August and October 1955 Floods is unknown

because the area was inaccessible due to downstream flooding.

An inspection report prepared by S.E. Minor and Company, Inc., Civil Engineers for the State of Connecticut Department of Environmental Protection in 1975 was available and reviewed. See pages B-7 - B-9 in Appendix B.

2.4 Evaluation of Data

a. Availability

Existing data was provided by the Bristol Water Department and the State of Connecticut Department of Environmental Protection.

b. Adequacy

The information that was available, along with the visual inspection, past performance history, and hydraulic and hydrologic calculations performed for this report, were adequate to assess the condition of the dam.

c. Validity

Field inspections and surveys revealed that the dam is constructed substantially as shown on the existing drawings.

SECTION 3

3.1 Findings

a. General

The visual inspection of the dam was conducted on April 28, 1981. At the time of inspection the water level was at the top of 13-inch high flashboards.

The dam consists of an earth embankment structure with a concrete overflow spillway and outlet works. A concrete corewall on the upstream edge of the crest meets the upstream slope approximately 2.5 - 3 feet below the top of the dam, Photo 1. In plan the dam has three angle points along its axis and roughly takes the shape of the letter "W".

The general condition of the dam at the time of inspection was fair.

b. Dam

The upstream slope of the dam, below the water level, is protected by a layer of riprap slope paving which appears to be in good condition, Photo 2. A concrete facing has been placed at the junction of the upstream slope with the corewall along portions of the dam. The facing is cracked and broken, Photo 2. The upstream face of the concrete corewall appears to be in good condition.

The crest of the dam is covered with a well-maintained grass cover, Photo 3. Sections of the crest appeared to have settled below the top of the corewall, Photo 3, but for the most part the crest was approximately level with the top of the corewall.

The downstream slope of the dam is covered with a wellmaintained grass cover, Photos 4 and 5. Several animal burrows were observed on the downstream slope to the left of the spillway, Photo 4. The animal burrows had been backfilled and stabilized Immediately downstream of the toe, trees have recently been cut from the area to the left of the spillway, Photo 4. are also present at the toe of the dam starting approximately 100 feet to the right of the spillway and ending near the outlet works, Photo 10, and at the intersection of the downstream slope with the right abutment. The area between the dam and Connecticut Route 72 is wet, Photo 5. The ponded water is probably due to a combination of seepage and highway runoff. Approximately 60 feet to the left of the spillway a very small amount of clear seepage was flowing from a wet area downstream of the dam, Photo 6. The area was covered with rust-colored floccules, with adjacent areas stained a rust color.

c. Appurtenant Structures

The appurtenant structures consist of the overflow spill-way, a service bridge over the spillway, and the outlet works.

Spillway

The overflow spillway consists of a concrete weir, training walls and apron, Photo 7. Flashboards with a height of 13 inches were in place at the time of inspection. The weir, training walls and apron have been gunited, a thin layer of which appears to be peeling off in some areas. At the base of the training walls there is a separation between the gunite on the walls and the apron, Photo 8. Several hairline cracks were observed in the gunite on

the apron. The end of the spillway apron is undermined, Photo 9. Immediately downstream of the spillway apron, the discharge channel is in ledge. Where the channel bends back toward the toe of the dam, the slopes are protected with heavy riprap, Photo 10.

Service Bridge

The service bridge over the spillway consists of a wood deck supported by steel beams which bear on the training walls, Photo 7. The bridge appears to be in good condition, however, the steel beams are not painted and were rusted.

Outlet Works

The outlet works consist of a 20-inch cast iron pipe through the earth embankment and a gatehouse at the crest of the dam. The gatehouse contains three manually operated intake gates at varying elevations, and an outlet sluice gate. All gates were reported to be operable. The outside of the brick gatehouse has been gunited and appears to be in good condition, Photo 11. The floor of the gatehouse consists of a wood grating. Efflorescence is present on the inside of the concrete walls of the structure. The end wall at the discharge end of the 20-inch cast iron pipe is badly deteriorated, Photo 12. Immediately below the end wall there is what appears to be a seep coming from under one of the stones in the outlet channel. Water flowing from this area transported rust-colored floccules, Photo 13.

d. Reservoir Area

There were no signs of instability along the edges of the reservoir in the vicinity of the dam. An area adjacent to the left of the dam appeared to be lower in elevation than the top of the dam. Connecticut Route 72 crosses the reservoir approximately 3,000 feet north of the dam.

e. Downstream Channel

The discharge channel for the outlet works is the natural streambed of the Poland River, Photo 14. Normal spillway flows discharge into this channel through a narrow channel excavated in ledge, Photo 15. Large spillway flows discharge through an auxiliary channel approximately 100 feet downstream of the dam. This channel is lined with boulders and is overgrown with numerous large trees, Photo 16.

3.2 Evaluation

On the basis of the visual inspection, the dam is judged to be in fair condition. The following features could affect the future integrity of the dam:

- Seepage downstream of the dam could lead to piping and internal erosion;
- The trees adjacent to the downstream toe could lead to the development of root systems extending into the embankment. The trees could uproot during a storm and cause damage to the embankment. Stumps and root systems can rot, providing paths for seepage;
- 3. Continued undermining of the spillway apron could lead to the eventual failure of the apron;
- 4. Continued deterioration of the outlet works end wall could lead to the eventual collapse of the wall;
- 5. The trees present in the auxiliary spillway discharge channel could obstruct flow.

SECTION 4

4.1 Operational Data

a. General

Water is drawn from the reservoir by opening one of the intake gates within the gatehouse as required, to supply water to a downstream distribution reservoir.

b. Description of Any Warning System in Effect

There is no formal warning system in effect. The dam is monitored during heavy rains.

4.2 Maintenance Procedures

a. General

Normal maintenance procedures consist of regular mowing and the application of fertilizer and lime to grassed areas of the dam.

b. Operating Facilities

Repairs are made as required.

4.3 Evaluation

Present operations and maintenance procedures are adequate and should remain in effect. An Operations and Maintenance Manual should be prepared for the dam and operating facilities, a formal downstream warning system should be put into effect and technical inspections by a qualified, registered engineer should be made annually.

EVALUATION OF HYDRAULIC/HYDROLOGIC FEATure (

5.1 General

The spillway at Bristol Reservoir No. 4 Dam consists of a 29.7 foot long broad-crested concrete overflow weir with a vertical upstream face and a slope of 1 horizontal to 3 vertical on the downstream face. At the time of inspection 13-inch high flashboards were in place. A bridge spans the spillway with 3.1 feet of vertical clearance between the upstream beam and the spillway. The crest of the dam is 4.0 feet above the spillway.

The dam has a maximum height of 40 feet and a storage capacity of 945 Acre-Feet at the top of the dam.

The tributary watershed area is 1.7 square miles of "rolling" wooded hills with very sparse development. Most of the watershed is owned by the Bristol Water Department. The watershed elevations range from 1120 feet in the northeast to 852 feet at the spillway.

The outlet works consist of a 20-inch cast iron pipe through the dam with an upstream gatehouse. There were two 12-inch and one 20-inch intake gates on the upstream wall of the gatehouse and one 20-inch outlet sluice gate on the downstream wall. The outlet works have a maximum capacity of about 60 cfs.

5.2 Design Data

Original plans for the dam dated March 1905 were available as well as plans for raising the dam dated August 20 and September 16, 1910. The plans include details of the gate chamber and outlet piping and the spillway. No design computations were available.

5.3 Experience Data

The maximum depth of flow over the spillway is unknown. The dam has never been known to have overtopped. The dam was inaccessible during the August and October 1955 floods because of downstream flooding.

5.4 Test Flood Analysis

Based on the dam failure analysis, the dam is classified as "Significant" hazard potential. The dam is classified as "Intermediate" in size based on a height of 40 feet and a storage capacity of 945 Acre-Feet. According to the Recommended Guidelines for Safety Inspection of Dams, by the Corps of Engineers, the Test Flood should be in the range of one-half the Probable Maximum Flood (1/2 PMF) to the Probable Maximum Flood (PMF). A Test Flood equal to the 1/2 PMF was selected because the height and storage capacity of the dam are low for an "Intermediate" sized structure.

A Test Flood equal to the 1/2 PMF was calculated using a peak inflow for the PMF of 2,125 cubic feet per second per square mile (csm) from the minimum two square mile drainage area shown on the Corps of Engineers' Guide Curves for "rolling" terrain and the 1.7 square mile watershed of Bristol Reservoir No. 4 Dam. The peak 1/2 PMF inflow calculated to be 1,840 cfs results in a Test Flood routed outflow of 1,410 cfs which would overtop the dam by 0.2 feet. Initial water level was assumed to be at spillway level with no flashboards. The flood routing through the reservoir was done in accordance with the Corps of Engineers' "Estimating Effect of Surcharge Storage on Probable Maximum Discharges". The spillway capacity without flashboards was calculated to be 760 cfs or

54 percent of the 1/2 PMF Test Flood routed outflow. With the 13-inch high flashboards which are normally in place the spillway capacity is 480 cfs or 34 percent of the Test Flood routed outflow.

5.5 Dam Failure Analysis

A dam failure analysis was made using the Corps of Engineers'
' "Rule of Thumb" Guidance for Estimating Downstream Dam Failure
Hydrographs'. Failure was assumed when the water level reached
the top of the dam. The 40 foot deep by 50 foot wide breach would
release up to 21,300 cfs into the stream channel below the dam.

The flood wave would produce depths of 10 to 18 feet in the Poland River overtopping Connecticut Route 72 for a distance of about 2 miles by depths of up to 5 feet. Further downstream, the flood would overtop Route 72 at several locations, Preston Road and the dam at Bristol Reservoir No. 3 (incorrectly labeled Bristol Res. No. 2 on the U.S.G.S. Quadrangle Sheet). The flood flow at a factory complex located 3 miles below the dam would have a depth of about 7 feet, and would inundate the lower portions of the factory to a depth of about 1 foot. The factory complex is operated by O-Z/Gedney and consists of several interconnected buildings. See Figures 5 and 5A, pages D-47 and D-48 in Appendix D.

Prior to dam failure the spillway discharge of 760 cfs would have an average depth of flow of about 5 feet with a maximum depth of 10 feet and would not overtop Route 72 or any of the downstream roadways. The depth of flow in the river channel at the factory complex would be about 3 feet with no flooding anticipated.

The dam is classified as "Significant" hazard potential because of the possible loss of a few lives and downstream property damage should the dam fail.

EVALUATION OF STRUCTURAL STABILITY SECTION 6

6.1 Visual Observations

The visual observations did not disclose any indications of structural instability. The future integrity of the dam may be affected by continued seepage downstream of the dam and undermining of the spillway apron.

6.2 Design and Construction Data

Design and construction data consisted of drawings for the original construction of the dam prepared by Freeman C. Coffin, Civil and Hyd. Eng., in 1905 and drawings for the raising of the dam prepared by Metcalf and Eddy, Consulting Engineers in 1910.

6.3 Post-Construction Changes

Since the original construction of the dam in 1905, the dam has been raised 7 feet in 1910 - 1911. Gunite repairs were made by Penetryn Systems, Inc. about 8 years ago to the spillway, the exposed portion of the corewall and the gatehouse.

6.4 Siesmic Stability

The dam is located in Seismic Zone 1 and in accordance with the recommended Phase I Guidelines, does not warrant seismic stability analysis.

ASSESSMENT, RECOMMENDATIONS, & REMEDIAL MEASURES SECTION 7

7.1 Dam Assessment

a. Condition

On the basis of the visual inspection, the dam is judged to be in fair condition. The future integrity of the dam could be affected by:

- Downstream seepage;
- Trees growing adjacent to the downstream toe and in the auxiliary spillway channel;
- 3. Continued undermining of the spillway apron; and
- 4. Continued deterioration of the outlet works endwall.

An evaluation of the hydraulic and hydrologic features of the dam determined that the spillway is capable of passing 54 percent of the Test Flood routed outflow before overtopping of the dam occurs.

b. Adequacy of Information

Available information was adequate for performing a Phase I Inspection.

c. Urgency

The recommendations presented in Section 7.2 and 7.3 should be carried out by the owner within one year of receipt of this report.

7.2 Recommendations

The following recommendations should be carried out under the direction of a qualified, registered engineer:

- Investigate the significance of the seepage at the downstream toe and in the outlet works channel. Design and construct seepage control and/or monitoring measures as needed.
- Investigate the undermining of the spillway apron and recommend remedial measures as required.
- 3. Perform a detailed hydraulic and hydrologic analysis in order to determine the need for and means to provide additional project discharge capacity and the effect of the service bridge on the spillway capacity.
- 4. Remove trees and stumps from the area within 20 feet of the downstream toe.

The owner should implement all recommendations made by the engineer.

7.3 Remedial Measures

a. Operations and Maintenance Procedures

- 1. Cut trees from the auxiliary spillway channel.
- 2. Repair or replace the outlet works endwall.
- 3. Remove the flashboards until detailed hydraulic and hydrologic analysis has been performed and recommendations implemented.
- 4. Establish a program of annual technical inspections to be made by a qualified, registered engineer.
- Prepare an Operations and Maintenance Manual for the dam and operating facilities.
- 6. Develop and put into effect a downstream warning system in the event of an emergency at the dam.

7.4 Alternatives

There are no practical alternatives to the recommendations contained herein.

APPENDIX A

VISUAL CHECK LIST WITH COMMENTS

VISUAL INSPECTION CHECK LIST PARTY ORGANIZATION

PROJECT: Bristol Reservoir No. 4 Da	am	
DATE: 28 April 1981 TIME: 10:45 a.	.m. WEATHER: Cloud	y 55°F
W.S. ELEVATION: 853.1 U.S. Top of 13-inch high flashboards	N/ADN.S	
PARTY		DISCIPLINE
1. Roald Haestad, P.E Roald Haesta	ad, Inc.	Civil/Geotechnical
2. Donald L. Smith, P.E Roald Haes	stad, Inc.	Civil/Hydrologic
3. Ronald G. Litke, P.E Roald Haes	stad, Inc.	Civil/Structural
4		
5.		
6		
	NSPECTED	
PROJECT FEATURE	BY	REMARKS
1. Dam Embankment	RH,DLS,RGL	Good condition
2. Outlet Works - Intake Channel & Intake Structure R	RH,DLS,RGL	None observed
3. Outlet Works - Control Tower R	RH,DLS,RGL	Good condition
Transition &	H,DLS,RGL	20-inch cast iron pipe through dam
Outlet Structure &		Endwall deteriorated;
Spill. Weir, Appr.	H,DLS,RGL	Channel is natural stream Undermining at
	H,DLS,RGL	end of spillway apron
7. Outlet Works - Service Bridge R	H,DLS,RGL	Good condition
8		
9	·	
0		
1		
2.		

DATE: 28 April 1981
NAME: RH
NAME: DLS,RCL
2012 7 7 7 7 7 7 7
CONDITIONS
856
853.1
Unknown
None observed
No pavement - crest is grass-covered
Possible settlement of crest downstream of corewall.
None observed
Good
Good
Some settlement downstream of corewall.
No structural items on slopes
Some animal burrows on downstream slope
Well-maintained grass cover
None observed
Riprap slope paving on upstream; slope in good condition
None observed
Wet area between left end of dam and Route 72. Small seep 60 feet to left of spillway.
None observed
None known
N/A
N/A

PROJECT: Bristol Reservoir No. 4 Da	DATE: 28 April 1/61
PROJECT FEATURE: Outlet Works - Int	aka Channal and
DISCIPLINE: Civil Engineers	NAME:DLS,RGL
AREA EVALUATED	CCNDITIONS
OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE A. APPROACH CHANNEL:	None observed. Plans indicate intake pipes extend from the gatehouse to upstream slope of embankment.
SLOPE CONDITIONS	
BOTTOM CONDITIONS	
ROCK SLIDES OR FALLS	
LOG BOOM	
DEBRIS	
CONDITION OF CONCRETE LINING	
DRAINS OR WEEP HOLES	
B. INTAKE STRUCTURE:	
CONDITION OF CONCRETE	
STOP LOGS AND SLOTS	

PRO	DJECT: Bristol Reservoir No. 4 Dam	DATE:	28 April 1981	
PRO	PROJECT FEATURE: Outlet Works - Control Tower			
DIS	DISCIPLINE: Civil Engineers		NAME:	DLS,RGL
	AREA EVALUATED	00	NDITIONS	5
001	LET WORKS - CONTROL TOWER			
Α.	CONCRETE AND STRUCTURAL:	 		
	GENERAL CONDITION	Good		
	CONDITION OF JOINTS	No joints obse	rved	·
	SPALLING	None observed		
	VISIBLE REINFORCING	None observed		
	RUSTING OR STAINING OF CONCRETE	None observed		
	ANY SEEPAGE OR EFFLORESCENCE	Some effloresc	ence on i	nterior walls
	JOINT ALIGNMENT	No joints obse	rved	
UNUSUAL SEEPAGE OR LEAKS IN GATE CHAMBER		No leaks or seepage observed; intake gates were open; entire chamber not observed.		
	CRACKS	None observed		
	RUSTING OR CORROSION OF STEEL	N/A		·
в.	MECHANICAL AND ELECTRICAL:	<u> </u>		
	AIR VENTS	N/A		
	FLOAT WELLS	N/A		
	CRANE HOIST	N/A		
	ELEVATOR	N/A		
	HYDRAULIC SYSTEM	N/A		
	SERVICE GATES	Reported opera	ble	
	EMERGENCY GATES	N/A		
	LIGHTNING PROTECTION SYSTEM	N/A		
	EMERGENCY POWER SYSTEM	N/A		
	WIRING AND LIGHTING SYSTEM IN GATE CHAMBER	N/A		

PROJECT: Bristol Reservoir No. 4 Dam	DATE: 28 April 1981
PROJECT FEATURE: Outlet Works - Transition	and Conduit NAME: RH
DISCIPLINE: Civil Engineers	NAME: DLS, RGL
AREA EVALUATED	CONDITIONS
DUTLET WORKS - TRANSITION AND CONDUIT	Conduit is 20-inch cast iron pipe
GENERAL CONDITION OF CONCRETE	through dam; not observed
RUST OR STAINING ON CONCRETE	
SPALLING	
EROSION OR CAVITATION	
CRACKING	
ALIGNMENT OF MONOLITHS	
ALIGNMENT OF JOINTS	<u> </u>
NUMBERING OF MONOLITHS	

PROJECT: Bristol Reservoir No. 4 Dam	DATE: 28 April 1981
Outlet St	ructure and
PROJECT FEATURE: Outlet Works - Outlet Ch	annel NAME: RH
DISCIPLINE: Civil Engineers	NAME: DLS,RGL
AREA EVALUATED	CONDITIONS
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL	
GENERAL CONDITION OF CONCRETE	Poor
RUST OR STAINING	Rust-colored staining in streambed approximately 10' downstream
SPALLING	Considerable spalling and deterioration of concrete endwall
EROSION OR CAVITATION	None
VISIBLE REINFORCING	None observed
ANY SEEPAGE OR EFFLORESCENCE	Possible seepage 10' downstream from under rock in channel
CONDITION AT JOINTS	No joints
DRAIN HOLES	N/A
CHANNEL	Natural stream
LOOSE ROCK OR TREES OVERHANGING CHANNEL	None immediately downstream
CONDITION OF DISCHARGE CHANNEL	Good

PRO	JECT: Bristol Reservoir No. 4 Dam		DATE: _2	28 April 1981
Spillway Weir, Approach PROJECT FEATURE: Outlet Works - Discharge Channels			NAME:	RH
DIS	CIPLINE: Civil Engineers		NAME:	DLS,RGL
	AREA EVALUATED		NDITIONS	
	LET WORKS - SPILLWAY WEIR, ROACH AND DISCHARGE CHANNELS			
Α.	APPROACH CHANNEL:			
	GENERAL CONDITION	Good		
	LOOSE ROCK OVERHANGING CHANNEL	None		
	TREES OVERHANGING CHANNEL	None		
	FLOOR OF APPROACH CHANNEL	Could not be observed		
в.	WEIR AND TRAINING WALLS:			
	GENERAL CONDITION OF CONCRETE	Good: thin latin places; und	yer of gun dermining	ite peeling off at end of apron.
	RUST OR STAINING	None observed		
	SPALLING	Opening between hairline crac		at base of wall;
	ANY VISIBLE REINFORCING	None observed		
	ANY SEEPAGE OR EFFLORESCENCE	None observed		
	DRAIN HOLES	N/A		
с.	DISCHARGE CHANNEL:			
	GENERAL CONDITION	Good		
	LOOSE ROCK OVERHANGING CHANNEL	None observed		
	TREES OVERHANGING CHANNEL	Some small tro	ees on edg	e of channel.
	FLOOR OF CHANNEL	Ledge at end		
	OTHER OBSTRUCTIONS	Normal flow go excavated in through auxil numerous tree	ledge. Lar iary chann	el which has

PRO	DJECT: Bristol Reservoir No. 4 Dam	DATE: 28 April 1981
PRO	DJECT FEATURE: Outlet Works - Service	Bridge NAME: RH
		NAME: DLS,RGL
	AREA EVALUATED	CONDITIONS
007	LET WORKS - SERVICE BRIDGE	
Α.	SUPER STRUCTURE:	
	BEARINGS	Beams appear to bear directly on concrete.
	ANCHOR BOLTS	No anchor bolts observed
	BRIDGE SEAT	No seat, beams bear on training walls
	LONGITUDINAL MEMBERS	Steel beams look good
	UNDER SIDE OF DECK	Looks good
	SECONDARY BRACING	Appears good
	DECK	Wood deck in good condition
	DRAINAGE SYSTEM	N/A
	RAILINGS	N/A
	EXPANSION JOINTS	N/A
	PAINT	No paint; portions of beams gunited
٦.	ABUTMENT AND PIERS:	
	GENERAL CONDITION OF CONCRETE	Good
	ALIGNMENT OF ABUTMENT	Good
	APPROACH TO BRIDGE	Good
	CONDITION OF SEAT AND BACKWALL	Beams bear on top of training walls

APPENDIX B

ENGINEERING DATA

NOTE, THE WATER SURFACE ELEVATION SHOWN ON THE 1969 THOMASTON U.S.G.S. QUADRANGLE MAP WAS ASSUMED TO BE THE SPILLWAY CREST ELEVATION. ALL OTHER ELEVATIONS ARE BASED ON THE ASSUMED SPILLWAY CREST ELEVATION.

IR NO. 4

Yert.

ROALD HAESTAD, INC CONSULTING ENGINEERS WATERBURY, CONNECTICUT US ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASS

NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS

BRISTOL RESERVOIR NO. 4 DAM

ì				
DRAWN	CHECKED	APPROVED	SCALES AS NOTED	
JRS	RGL	RH	DATE MAY 1981	PAGE B-I

LIST OF REFERENCES

Reference Nos. 1 and 2 are located at the Bristol Water Department, 119 Riverside Street, Bristol, Connecticut 06010. Reference No. 3 is located at the Department of Environmental Protection, Water and Related Resources Unit, State Office Building, Hartford, Connecticut 06115.

- Plans for the original construction of the dam by Freeman
 Coffin, Civil and Hyd. Eng., March 1905.
- Plans for the raising of the dam by Metcalf and Eddy, Consulting Engineers, August 20, 1910 and September 16, 1910.
- 3. Inspection Report by S.E. Minor and Company, Inc., Civil Engineers, for the State of Connecticut Department of Environmental Protection.

B-3

SECTION H-H SECTION D-D SECTION K-K SECTION G-G SECTION C-C SECTION J-J SECTION F-F SECTION B-B SECTION 1-1 ζ--SECTION E-E , Top of present Dam SECTION A-A SCALE OF SECTIONS 20'+1" 9 PLAN OF DAM. SEALE 50' - I" *16" (lapped 16") El 710.5 (Crest of proposed Dam.) Z 95 These years to be prouted E Proposed H W one 21 708 a rods 5'C to C (Staggered) and 4' from face of wall E1.7935 and of present paving and gravel El 7005 top of . Present H W line El 6935 Top of present core wall to be roughened and acrubbed with mate of luans and stepped to prevent sliding Approx El of Bottom of Reservoir Diene to Mill -SECTION THROUGH DAM CALE 2 1 fr ++ + + +

.

The State of the S

111

_

_

.

S. E. MINOR & CO., INC. CIVIL ENGINEERS

161 MABON BTREET
GREENWICH, CONNECTICUT 06830

October 2, 1975

State of Connecticut
Department of Environmental Protection
State Office Building
Hartford, Connecticut 06115

Attention: Mr. Victor F. Galgowski
Superintendent of Dam Maintenance
Water and Related Resources

Re: Bristol Reservoir #4
Harwinton, Connecticut

Dear Mr. Galgowski:

In accordance with your request, we have examined the subject dam in order to ascertain its structural soundness and stability. Prior to our visit to the site, we went to the Town Hall offices and attempted to obtain any structural drawings of the subject installation. We were advised that no plans were on file and that the Town officials had no knowledge whatsoever of the construction of the dam.

Upon visiting the site, we examined the structure which consists of a masonry back and an earthen top and face. The top of the dam is approximately 8 feet wide, and the face has a slope of about one on two. The length of the dam totals approximately 875 feet and contains a valve house approximately 8 feet by 10 feet in area. There is generally 2 feet 6 inches of freeboard on the masonry back of the dam, and the slope from water level runs back at about a one on three slope which is surfaced with concrete and rubble.

The spillway to the Poland River is 30 feet wide with masonry cheek walls on either side and a wooden bridge on steel girders overhead. The top and face of the dam together with the spillway have been properly maintained, and there was no evidence of fissures, leaks, or boils anywhere throughout the face of the 875 foot dam. There was no evidence of overtopping at any time, and bridge computations of the watershed area indicate that the spillway and Poland River are perfectly capable of taking storms with a frequency less often than once in 25 years.

State of Connecticut Page 2

Re: Bristol Reservoir #4

The enclosed sketch of the dam indicates the general layout of same together with the general dimensions and location of the spillway and bridge. It is our considered opinion that the dam is structurally sound, free from leaks, and that with normal maintenance as evidenced by our visit said dam will remain in service for many years.

Should you have any questions or comments regarding this dam, please feel free to contact me.

Respectfully submitted,

S. E. MINOR & CO., INC.

Edward F. Ahneman, Jr., P.E.

· Elen I Blown of

Chief Engineer

EFA: 1b Enclosure

SECTION Scale 3/4"=1"

NOT TO SCALE

SKETCH

BRISTOL RESERVOIR* 4

HARWINTON, CONN.

APPENDIX C

PHOTOGRAPHS

Denotes photo number and direction in which photo was taken

The second secon

SERVOIR NO. 4

ROALD HAESTAD, INC CONSULTING ENGINEERS WATERBURY, CONNECTICUT

US ARMY ENGINEER DIV NEW ENGLAND COMPS OF ENGINEERS WALTHAM, MASS

NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS

PHOTO LOCATION PLAN BRISTOL RESERVOIR NO. 4 DAM HARWINTON, CONNECTICUT

1	DRAWN	CHECKED	APPROVED	5CALES	1" =	80 '	
	JRS	RGL	RH	DATE 5/	81	PAGE	C=I

PHOTO NO. 1

OVERVIEW OF UPSTREAM FACE OF DAM FROM RIGHT ABUTMENT.

PHOTO NO. 2

RIPRAP SLOPE PROTECTION AND CONCRETE FACING AT UPSTREAM SLOPE OF DAM.

USARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS BRISTOL RES. NO. 4 DAM
POLAND RIVER
HARWINTON, CONNECTICUT
CT 00364
. # AFFIL '81

PHOTO NO. 3

UPSTREAM CONCRETE WALL AND CREST.

NOTE POSSIBLE SETTLEMENT OF EMBANKMENT AND GRASS COVER ON CREST.

PHOTO NO. 4

ANIMAL BURROW ON DOWNSTREAM SLOPE AND CUT TREES AT THE TOE.

U.S.ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS BRISTOL RES. NO. 4 DAM
POLAND RIVER
HARWINTON, CONNECTICUT
CT 00364
28 APRIL '81

PHOTO NO. 5

WET AREA BETWEEN DAM AND ROUTE 72.

PHOTO NO. 6

DOWNSTREAM SEEPAGE. NOTE RUST-COLORED FLOCCULES.

U.S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS POLAND RIVER
HARWINTON, CONNECTICUT

CT 00364

28 APRIL '81

PHOTO NO. 7

SPILLWAY AND SERVICE BRIDGE FROM DOWNSTREAM.

PHOTO NO. 8

BASE OF LEFT TRAINING WALL. NOTE SEPARATION OF GUNITE.

U.S ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS POLAND RIVER
HARWINTON, CONNECTICUT

CT 00364

28 APRIL '81

PHOTO NO. 9

END OF SPILLWAY APRON. NOTE UNDERMINING.

PHOTO NO. 10

SPILLWAY DISCHARGE CHANNEL. NOTE LEDGE TO LEFT AND RIPRAP PLACED ALONG RIGHT SIDE OF CHANNEL TO PROTECT DOWNSTREAM TOE.

USARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS BRISTOL RES. NO. 4 DAM
POLAND RIVER
HARWINTON, CONNECTICUT
CT 00364
28 APRIL '81

PHOTO NO. 11

GATEHOUSE

PHOTO NO. 12

ENDWALL AT DISCHARGE END OF OUTLET WORKS. NOTE DETERIORATION OF CONCRETE.

U.S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS POLAND RIVER
HARWINTON, CONNECTICUT

CT 00364

28 APRIL 81

PHOTO NO. 13

POSSIBLE SEEP IN STREAM BELOW OUTLET WORKS. NOTE RUST-COLORED FLOCCULES.

PHOTO NO. 14

NATURAL STREAM BELOW OUTLET WORKS.

SPILLWAY CHANNEL ENTERS AT
LEFT IN BACKGROUND.

U.S.ARMY ENGINEER DIV. NEW ENGLAND COMPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS POLAND RIVER
HARWINTON, CONNECTICUT

CT 00364

28 APRIL 81

PHOTO NO. 15

SPILLWAY CHANNEL EXCAVATED IN LEDGE.

PHOTO NO. 16

AUXILIARY SPILLWAY CHANNEL.
NOTE TREES AND BRUSH.

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS POLAND RIVER

HAPWINTON, CONNECTIOUT

CT 00364

28 APRIL *81

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

BY SAL DATE 5/24/8/ CONSULTING ENGINEERS CKD BY JL DATE 5/27/81 JOB NO. 49-045 37 Brookside Road - Waterbury, Conn. 06708 SUBJECT BRISTOL RESERVOIR NO. 4- Project discharge capacity Spillway Profile: (Not to scale) FLOW Q = CLH 3/2 Top of flashboards EL 853.1 _ Spillway EL 8520 Spillway Length = 29.7'
Spillway discharge coeff = 3.2
Flash boards " = 3.3 Note: The bridge's influence on the spillway discharge capacity was not considered. Dam Profile: (Not to Scale) TOP OF DAM EL. 856.0 Top of Flashboards EL. 853.1 Spillway EL. 852.0 <u> 29.</u>7′ 425'± 505 '± Dom Discharge coeff = 3.0 W/O FLASHBOARDS W/FLASHBOARDS Spillway Total Disch. Dom (cfs) ELEV. Spillway Total Disch. Dam (feet) (cf_s) Cap. -(cfs) (cfs) Cap. - (cfs) 0 0 852 0 0 0 0 853.1 110 0 0 110 0 0 269 84 854 0 84 269 0 855 494 257 0 257 494 0 856 0 484

760

3,853

9,288

16,257

0

2,790

7,89/

484

755

1,063

1,405

3,545

8,954

15,902

2,790

7,89/

14,497

760

1.063

1,397

1,760 14,497

857

858

859

	SAL DATE 5/24/8/	ROALD HAESTAD, INC. CONSULTING ENGINEERS	SHEET NO	.≨OF. <u>∴.</u> [
	BY DL SDATE 5/27/8/	37 Brookside Road - Waterbury, Conn. 06708	JOB NO	
SUB	JECT BRISTOL RE	SERVOIR NO 4-Project d	ischarge s	apacity curve
, -				17
-				
+ - +-			· · · · · · · · · · · · · · · · · · ·	
; ;				
•				100
		ds.		(1)
; 		1,000		zfz
-		0.50/	• •	8
		00		2/-
	38/10	3	· · · · · · · · · · · · · · · · · · ·	306
; }	W	853	•	HAH
·	3. 1	9 John 19 19 19 19 19 19 19 19 19 19 19 19 19		/SC,
ŀ		AES:		0
-	8	\$ 0.00 m	00	
<u> </u> -	8	2):SC	<u> </u>	
-	8	HSK HE		
}- }-			17//d	
			5	
QX L	0	25 75	5.3	727
Q.	5+ 166 + 168	00	00	w

BY SPL DATE 5/4/8/ ROALD HAESTAD, INC. SHEET NO 5 OF CONSULTING ENGINEERS

CKD BY DED DATE 5/27/8/ 37 Brookside Road - Waterbury, Conn. 06708 JOB NO. 49-045

SUBJECT BRISTOL RESERVOIR NO. 4-Surcharge stange capacity

		Average	Sur	charge,
ELEV.	Surface Area (Acres)	Surface Area (Acres)	Storag	e Capacity re-Feet)
			W/o Flashboords	
85 Z	43 *		0	0
853.1	45	44	48	0
854	46.6	45.8 47.45	90	41
855	48.3	49.2	137	89
856	50.1	51.Q	186	/38
857	51.9	52.8	237	/89
858	<i>53</i> .7	54.55	290	242
859	55.4	<i>54.3</i>	345	296
860	57.2	28,3	401	353

* The surface area at spillway level was supplied by the Bristol Water Department.

	вт <i>В.</i>	ATE <u>5/2</u> USTOL			side Road - W							ociTu
-						·		<i>9</i>		<i>y~</i>	700	•••••
		<u> </u>			• • •							
-			- : -		• • • •					•		
	····		· · - · · · ·		· · · · ·	• • •		· ; ;				
_	, -	1	Ω		: :			,				1
					1 1		· · · · · · · · · · · · · · · · · · ·					. 6
	!	+++-	. io		- 4						٦	4
_		+	Ä						• • •		88	, S
		+-!	4		•							. X
 ; -			. 0		12m	· · · · · · · · · · · · · · · · · · ·						7
		<u> </u>	<u> </u>	- - - - - - - - - - - - - -	77	·	· - ···· ·					0
	and in the process of the second		<i>∪</i> +	;	8 8		· · · •	· ·		•		00
r -			- 6 -		2			\$60				U
-		<u> </u>			50			j			902	. 90
	<u> </u>		,\		0, 0,		• .				S	00
 L .				<u> </u>	200		!	527	,			$\cdot b$
		1		\	.)			Ř U				Ŋ
-		1 . /		·\				Ŋ		0		36
					- 		(X .		52		Š
		 						§		w		7
	1	150						K.		73	8	Á
 - -	, -	g g					!	8		٨	1	Ŋ
		83						[5		
	+	98	÷ = {		• • •			7		777		
		El								QS QS		
_	+ +- + +	18 3		• - • - •	•	`			\ ·	3		
	+ + + +									\		•
_	1 1 1	+ + + +	, n		16						10	
j	1	15.	35	- · · · ·	356	354		353		. [Ž .	•

BY SAL DATE 5/26/81

ROALD HAESTAD, INC. SHEET NO OF CONSULTING ENGINEERS

CKD BY P-SDATE 5/27/8/

37 Brookside Road - Waterbury, Conn. 06708 JDB NO 1/51-71-75

SUBJECT BRISTOL RESERVOIR NO.4 - Test Flood

TEST FLOOD = 1/2 PMF

Droinage Area = 1,107 Acres = 1.73 sq. mi.

From Corps of Engineers chart for "ROLLING" Terrain

MPF = 2,125 cfs/sqmi (2.0 sqmi Minimum)

PMF = 2,125 cfs/sqmi x 1.73 sq.mi = 3,676 cfs

1/2 PMF= 1/2 (3676) = 1,838 use 1,840 cfs

Qp1 = 1,840 cfs

Note: The flood routing for the test flood was done assuming no flash boards are in place.

Hi = 4.4 feet above spillway, from Discharge Capacity

STOR, = 206 Ac-Ft , from Storage Capacity Curve

= 2.2" of runoff from 1.73 sq. mi.

Note: PINF runoff in New England equals approx. 19".

Therefore 1/2 PMF runoff equals approx. 1/2(19)=9.5".

QPZ = Qp1 (1- STOR) 95")=1,840 cfs (1-2.2/95)=1,414 cfs

Hz = 4.2 ft STORZ = 196 AC-FT

STORAVE = (STOR, + STORZ)/Z = (ZO6+196)/Z = ZO1 Ac-Ft

QP3 = QP1 (1- STORAVE/9.5) = 1,840 cfs (1-2.2/9.5) = 1,414 use 1,410 cfs

Spillway capacity w/o Floshboords = 760 cfs (Top of dam)

40 of 1/2 PMF = (760/1410) ×100 = 54% of 1/2 PMF

Spillway W/Flash boards = 480 cfs (480/1410) x100 = 34% of 1/2 FINF

BY SAL DATE = 125/8/ ROALD HAESTAD, INC. SHEET NO OF CONSULTING ENGINEERS

CKD BY DLS DATE 5/27/9/ 37 Brookside Road - Waterbury, Conn. 06708 JOB NO 45-045

SUBJECT BRISTOL RESERVOIR NO. 4-Dam breach colculations

S= Storage at time of failure with water level at top of dam

S = Storage at Flashboard Level + Surcharge Storage

S = [263 × 106 gol x locre-feet] + 138 Ac-Ft (From surcharge 325,851 gol] storage capacity curve)

S = 807 Ac-Ft + 138 Ac-Ft = 945 Ac-Ft

* The storage capacity at flash board level was supplied by the Bristol Water Department.

Qp = Peak Failure Outflow = \$127 Wb Vg Yo 3/2

Wb = Breach width - 40 % of dans length across river at mid-height = 0.4(125) = 50'

Yo = Total height from river bed to pool level at time of failure = 40'

 $Q_{Pl} = \frac{8}{27} (50) \sqrt{32.2} (40)^{\frac{3}{2}}$ = 21, 267 use 21,300 cfs

A CARL CARROLL

11	1.1	(%	;		* *	
1811	1.ET2	te face of the	1.1	A STATE OF THE STA		Company of the Compan
11	1.0	1	11 (11)	en jako kinda		÷
11.	3.77	•		1 1 2 1 1 1		
		i., '	• * •	40.00	1	
tg , 1)	1	r 1	43° 13	i , U. / 11	* , *	4.7
1.1	% - 3. 1 A - 3. 1	: ()	1	$\mathcal{O} \geq 0.0$	14.7	
11		197	.1 17	gradicity b	4.5	
.1 11	, to	1 1	4, 1	9.741.14	tig tata	\$ 11.4
. 0	7.4	1 7 1	4	0.09990	200	14.4
. , 11	2.1	era.		$0.03\mathrm{G}$ $^{-1}\mathrm{GH}$	The second of the second	
5.11.11	13 4 1 24 1	* - * 4 * *	$p_{ij} = A_{ij}^{(i)}$	· 一个 24年4	1	
. 0)	1 1	0.182419	1 1	
4 1. 4	4.	etter i ge		0 1260	**	
1 . 11	3 (4)	1. C	100	production	1	
7.4 9	2.5	. 3	*	Q (7.13)		1
.5.0	77.7 a.1 4.2 a.3			0.150		•
1 A ()	35	44 - 1 V	10 HZ	0 0 0 0 0		
15.00	3.5	$\mathbb{Q}_{p} = \{ (1, \frac{1}{p}) \mid (1, \frac{1}{p}) \}$	12 417	$\{\} \in C_{n}^{\infty}(\{1\})$		
90.0	35	453	12.1	10、伊景伊林	·	*
19.0	11	* * * * * * * * * * * * * * * * * * *	14,79	9,0209		
20.0	75	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.0000		

the specific of the second second of the property of

many of the contract of

The second section of the second

14	i				•.;	
: 1	11.		f 1 1	• . 1 !	Land Control	* .
, . · · · ·		·.	e			
u li	1. 4 . 4	1.7	11	· · · · · · · · · · · · · · · · · · ·	1. F	·
1 :	1.4.1	3 a 3	1	 1		₹ [†] u
1 · · · · · · · · · · · · · · · · · · ·	i	to en a	2.24	化二磺亚甲酚	$x = \{ 1 \}$	1.5
	*** <u>u</u>	et + et	300	gr. 3 (1994)	11 (12	
in the	1.5	7.0.79	4,00	0 (290	5 00	14 1
	121 A	1.34.7	4.96	0.0000	Att	7.5
	2 y 19 y	1 2 4	5.03	n 9200	<u>5 81</u>	129
15 0	<u></u> ,	1010	& . AO	0.0200	7 46	141771
and the second	1. V (2196	7 51	6 6200	U 110	1 25 148
		74 KB	9.33	0.0200	St. AL	175.17
	0.0%	9765	0.13	0.9200	\$1.3.6	
	XYZ	3.693	0.00	6 0200	9.75	
	338	ÄU Ü A	: 6 , 7 (t	0.290	10 21	
		9.727	44 47	1	9 G + **	rai j
		1.054	12 13	ALCOHOLD STATE	1 1 1	
	ak m	4388	19. g	(120		
	#* · · · · · · · · · · · · · · · · · · ·	1728	13.71	· (Property)		

manylwo topered, to been a trut

SAL 5/2:31

DEC 19 C/27/8/

SELECTION DUNCER IN

PRINT OVERGOID

μα #- (-)	La c (1 / c)	C. Chambar	1.		42 4 2 4 4 4 4 4	
•	70 110 150 150 150 170 170 170 170 210 210	1/0-63/ 44 2/4 2/4 410 56: 756 934 1/24 1/32 1530	7. A.	0.0706 0.0706 0.070 0.000 0.000 0.0200 0.0200 0.0200 0.0200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
10.0 17.0	234 240 257	18 / E 2 / 12 / 2 2 / 4 / 2	8 1411 14 . 6 2 14 . 15 14	0.0200 6.0200 6.0200	# (0 - 60%) # (1 - 60%) # (1 - 400)	0.44 mills 1664 mills 2007 g

CONTRACTOR OF THE FILL OF MADE AND A SECOND

D48 9 5073

 $(x_1, \dots, x_{n-1}, \dots, x_{n-1}, \dots, x_{n-1}, \dots, x_n)$, where x_1, \dots, x_n is the property of the property of

Same the other

71, or 54 (*10M

		<u> </u>			A T S C M A H G L MH21			
Sep.	f-4 		•	i Disala	1	₽ 1	t."	10)(,,,
÷ 4	12	1:	()		L_{i} ys.	1.	Ü	$t_{VT,x}$
1	27	li .	(i		1.50	÷.	f.;	7.52
4 . U	در خ		n	M 25	2007	**	•	5 D C
4j + ij	61	9, 1	1,1	1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	194.5	45	*	$\omega \in \Omega$
1, 0	63	S.C	į, t	$\frac{1}{\sqrt{2}}e^{A} + I_{1}^{\alpha}\gamma$. 1.7		4.5	15.03
z . 0	: 67	5.83	(1	5.50	to see to	2026	1 1	5012 =
7 V	139	810	ti ri	2.1000	1947	31.97	$K_{\lambda \nu}$.	4. 1. 1. 1.
34 M	171	1079	ų (elk	1353	14 (130 6)	5,794	0.83	$\mathcal{Q}(\mathcal{F}_{1},\mathcal{F}_{1})$
n de en Notae	jud	1347	264	1818	(2.2 g/m)	8733	1011	11465
70.9	4 T. E.	1871	t.j 🤨	. 1517.4	Self-Fig.	11050	The second	1000
1	267	1902	562	2750	4347	1.4 5.75	7.1.01	200
1 A W	299	2100	7.554	3242	5203	17656	177, 00%	100
	331	2484	934	$\mathbb{C}_{\lambda,n} : \Omega \to \Omega$	aloa	24456	2 + 5 + M	ti
; 11 , (i	253	2785	1324	1	1145	(C) C) (1) (1)	$\omega_{\zeta^{\prime}, \gamma^{\prime}, \gamma^{\prime}}$	4
g in a Million A Million and	395	3092	1320	$a_1 \gtrsim a_2 m$	9241	34:11	1000	
1 60 A	U.27	3506	1.505.0	5.600	Şural,	The grant of	47,1231	
10.0	450	3727	1746	£.00.5 f	10640	$\mathbb{N} \to \mathbb{Q} \setminus \mathcal{M}$	7 2 1 1 11 1	1000
	4 9 J	4054	1973	1 K. V. J.	5 g 😌 (c.)	450 45	The test of	
() () () () () () () () () () () () () (523	4388	2012	71.24	13229	知识 医肋毛	200 / 100	1
0 0 0 0	555	4778	24.83	7744	i destica	Bray Roads		ţ 1

STORAGE AT TIME OF FRIEDRICS OF THE THE LENGTH OF REACHESTS . TO SEE

INFLOW INTO REACH=061= 215+0 1000

DEFTH OF FLOW=H1= 1000 F

CROSS SECTIONAL ABEADATE 2000 1000 1000

ETOFASE IN PERCEPTED 1000 1000 1000

REACH OUTEROUSERS TO A FOR

BY	ROALD HAESTAD, INC. CONSULTING ENGINEERS 37 Brookside Road - Waterbury, Conn. 06708	SHEET NO OF
SUBJECT FRISTOL RESERV	'QIR NO 4 - FLOOD ROUTIA	Y.G
<u> </u>		
SECTION NO 1		SCALE:
		:
	BAC	. L = 2000' .S = 0.02
		. N(A) = 0.05
		N(B) = 0.1 N(C) = 0.08
	_ . _ . _	
10	· · · · · · · · · · · · · · · · · · ·	
3		
3 7		· · · · · · · · · · · · · · · · · · ·
7 6		**************************************
0 5		•
3		
2		
/		· · · · · · · · · · · · · · · · · · ·
0 5	10 15	25 30
	DISCHARGE - 1000 CF	\$
R		
0		
3 8		
1 6		· · · · · · · · · · · · · · · · · · ·
5-6	and the second s	in and a second and a second as a second
3		
2		
	/	<i>2</i>
	AREA - 1000 SQ FT	

DLS 11 5/27/21

the provincial configuration for the state of the province of the state of the stat

510)10; num(14/2

TOTAL SECTION ISTORAGE CARACTLY WITHIR REACH)

HELGHT (FEET)	SURFACE AREA LAUSETT	grousser Ventuer. Artifolijker:
1.0	11.5	
2.0	11 . 11	4.
3.0	(0.16)	P.
4.0	v_{+}, u	1
5.0	0	-
6.0	0.910	• .
7.0	a=0.5	4
8.0	1.24	F1.
Ÿ ń	4 AD	
1.11.1)	1.54	7 1
11.0	3, 43	:
12 0	## . 1.4.	<u></u>
13.0	6,40	20 11
14.0	8 82	28.4
10.0	10.785	\$7.5
16.0	12.48	ч .
17.0	14.31	#2.ft
18.0	26.14	78 ;
19.0	17.97	• (***)
20.0	1 St. 19 14	(the fi
$2x \cdot 0$	2.2 4 4	
72.0	22.27 - 34.43	$4 \sim c c$
23.0	23 70	2.70
24.8	25 69	24 Š. G
25.6	26.20	21 D 2

STORAGE CAPACITY CALCULATED FROM SUBSACE AREAS AT ENGUN FLETA F TO

DLU 5/27/31

: 1:

 $((a_{1},a_{2},\cdots,a_{n})) = ((a_{1},a_{2},\cdots,a_{n})) + ((a_{1},a_{2},\cdots,$

SECTOR COMMERCY

Street SECTION

HEIOHT ABOVE INVERT (FEET)	N T S & H A R COMMUNIT SOFF)	0 6 0 0 STILLOUT (CES)	r de de la companya d
1 . 11	(1.1) (1.1)	ij	
2.0	$\tilde{\mathbf{q}}$	() ()	1)
¥, 0	\$.ij	Ü	11 1/44
4.0		\(\frac{1}{4}\)	190
5.0		** **	1.7
ŏ , Û	248	i i	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
7.0	204	į į	
£ . Ü		· {!	
ş, n	35.4	9	ering to the second of the sec
1. (* . ()	385	A 10 W	
11.0	410	7 : h	1
12.0	\$1 (3.4);	1.750	1 ,
1.3.0	\$ 6.2	227 73	,
14,0	ų. <i>⊊</i> ()	1, 1, 1	La Company
15.0	511	数集制 [1]	
1 : 0	40 mm	8Y74	with a state
17.0	5 4.7	12410	1,70
38 0	567	13.342	1 417
19.0	By)	20703	11/19/11
20-0	Ø ± 6.	25547	2645
21.0	co., N. 🚰	31674	1141
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	£144.45	PP (pty a	A. g
23.0	6.0 C	44697	payer to the
24.0	672	50051	1.7. ±1
25.9	5 ₩ 4	5 48 83	64572

INFLUG INTO REACHORD (* 1878) - 188 HETCHT AROVE CONTAIT INVESTMENT: - 18 FT STURAGE IN PENCHOLOUS SOURCE (* 1887)

TRIAL MEJOHO ABOVE CONDUIT INVEKTORITALITY (1997) TRIAL MEJOHO ABOVE CONDUIT INVEKTORIALITY (1997) TRIAL BROWNESS IN REALH-VITETALITY (1997)

REACH OUTFLOWS SET TO A FOR THE HEIGHT ABOVE COMPOST SAVERIENTS OF THE SET OF

BY PAM DATE 5-21-81

CKD BY SALDATE 5/27/8/

ROALD HAESTAD, INC.

CONSULTING ENGINEERS
37 Brookside Road - Waterbury, Conn. 06708

JOB NO. 49-045

SUBJECT ERISTOL RESERVOIR NO 4 - FLOOD ROUTING

DLS 11611 5/27/8/

 $(i,i+j) \in \{i,j\}$

and the second of the second o

Condition of the analysis of the

TOTAL SELECTION

H	t.i	,	1	55	V	1.2
(+1 <u>1</u>)	<u>CET2</u>	(Cult.)	• •	* CT CETT!		: * * · · ·
1.0	the ()	7 (L m A)	0 . ÷(1	0.0077	h , 78°)	• •
2.0	1.90	(40)	1.00	0.0077	1.50	$i = i^{*}$
5.3	156	+ + F ² A+ ++ ++	1.759	0.0077	a restar	
15 , (i	200	trajat)	F. 4.2	0.6877	1.16	1
5.0	250	e. (21)	2 + Color	0.8977	1111	± 4 € 1 · 4
ev. 0	300	$\forall 0.0$	$z_{\rm c}$, 0.0	U. #077	' . 1	2449
7.0	350	$\frac{q-c}{dc}\frac{p+c}{\delta c}\frac{h_{c}}{c}\frac{1}{c}$	人。50	0.0777	6.1	· 11
8.0	400	1600	u., () ()	0.9077	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	trans.
9 , Ü	ų S Ü	2025	$W_{ij}(Y_i, Y_j)$	0 0077	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2.19
10.0	500	74%+ (r.f)	. 11(1	0.0077	4. Th	* 1, 1
11.0	518	医自食学	10 Mg	0.077		1 " .
17.0	536	(A(+, M.E)	$\phi = c. H$	0.45077	H . * ()	E i
13.0	553	M O TO	7 37	9.0077	11 (19)	and the second
14,0	571	प्रपत्	84 . 2 3	0.0077	1.77	1.100 €
15.0	589	E. P. J. Sec.	\mathcal{X}^{*} , \mathcal{X}^{*}	0 . 0 0.77	e i i i i i	100
16.0	Ó06	11 A 11 A 11 A	W 1977	0.0077	1000	
17.0	624	ATT 224	j b ≠ / Ú	A , V (L27	7 . 1 7	
18.0	642	70au	$_{2}$ 3 ± 0.2	0.0077	44.1	17.7.34
19.0	659	770%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 (c) 7.7		200
20.0	577	8375	12 357	0.0077	1 - N	ι .
21.0	689	Se (D.C.)	4, 41	0.0077		1 .
22.0	702	96 € 11 Fe	$V = V = \frac{1}{2\pi} V^{2} V^{2}$	9.64.		
23.0	715	Total Const	(4) cm2	5 - 5 (17 -		
24,0	727	1. 1.1. 757	15 Bd	0 + 60 + 7	1 1	
25.0	74.0	11505	16 89	U - 0.0.5.5		

MARKATHO COEFFICIENTS DESCRIPTION

STOPASE A LITTLE OF FAILURESS SUB-

The property of the particular points of the contract of

. No Ethic Conflict in the Centro Paper (1997) (199

TRIAL PLACE OUR FLOUR CHATRIAL) - 100 mg/s

TRIM PUPIH OF FLOOR HOTPIALS OF A SET TRIM CPUSS SECTIONAL AREAS (TRIADS)

KENDO OFFICE CONTRACTOR OF STATE

THEFT OF FLOORING TO STATE OF THE

BY.	PAM	DATE	5-21-8/
	SAL		5/27/81

ROALD HAESTAD, INC.

CONSULTING ENGINEERS

37 Brookside Road - Waterbury, Conn. 06708

JOB NO <u>C49-C45</u>

SUBJECT BRISTOL RESERVOIR NO. 4 - FLOOD ROUTING.

EAL 1 5/27/21

101 DLS 11 5/27/8/

HINGE THE PROPERTY OF THE PROP

SECTION COMPANY W

TO M. SECTION

H (FT <u>)</u>	W CFI:	(<u>C(2-FT)</u>	P. C.	S (F)/FI)	A CELEVISION 2	Tthe.
1.0 2.0 3.0 4.0 5.0 7.0 6.0 7.0 9.0 10.0 12.0 13.0 15.0 15.0 15.0 15.0 20.0 21.0	28 55 85 110 136 148 149 246 276 276 336 356 356 376 376 4137 477 474 512 547	14 55 124 220 344 425 874 880 1114 1575 1660 1265 2290 2635 3000 3385 3790 4215 4215 5125 5609 5125 5619 5165	0.000 1.500	0 0007 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067 0,0067	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	2 2 2 4 4 1 1 1 2 4 1 2 4 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
25.0	565	7719	13.66	And a second of		

MANNING COEFFICIENT=W=9,1600

STORAGE AT TIME OF FAILHEETS - SEA OF FILL LENGTH OF PEACHTLE THEFE ET

IMPLOW INTO PRODUCTION OF B 113

DEPTH OF FLOWWRITH THE ATTECHNOLOGY OF FT

STUPPORT IN RESCHOULT ON A TEXT

TRIAL PEACH OUTFLOU-QUITPIAL = 1.60% (FS

TRIAL DEPTH OF FLOOD-HITE ALDS 13.7 FT
TRIAL CROSS SECTIONAL AREGRA(TRIAL) THE STOPAGE IN CONCENTRAL) # 107.7 67. FT

PEACH OUTFLOUGHERS TOWARD LES DEPTH OF TLOW=112: 13.311.

SUBJECT <i>ERISTQLRESERY.O</i> .	UR NO 4-ELOOL	ROUTING.		•••••
SECTION NO 4			SCALE: 1" = 100' HOR. 1" = E0' VERT	Z
	<u> </u>	/	L=1500' 5=0.0067 N=0.1	
				•
33-M072				
30 11.00				
0 10	20	30	40 50	
		PGE -1000.CA		6
773	Dischar	3GE -1000.CA		•
H.OW-F				
0.44				

AREA - 1000 SQ FT

to any property on the state of the state of

SECTION PROJECTION

ministration (Historia)

Н	LI	fi.	f,	b	V	1.1
(F))	(F.T.)	Santa E. E. S. J.	(F <u></u>)	(C 7 × F 1)		+ + +
1. (18	ф.	0.56	0.0250	3 (12)	11
2.0	(5.6)	35	₩,99	0.0180	1 (27)	•
3.0	15 T	79	1,49	θ , θ) \odot θ	1	1.00
u, ()	71	1 to 0	1.98	0.0180	10 to	15.1
5.0	88	235	2 48	0.0180	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* •
6.9	106	310	2.08	0.0189	14. 13%	1 - 1 - 1 - 1
7.0	123	4/29	0.47	0 : 0 3 8:0	$4\chi = \xi_3 \gamma_5^{\prime\prime}$	1.0
8.0	141	F.6.0	3 97	0.09380	(5), 100)	
9.0	159	769	$L_{i-1}, L_{i} \not\subset_{i}$	0.6189	1. A.	1.0
10.0	1.76	875	4., 47.	0.0120	1 1 11	*
11.0	186	3 (11,1°)	5.65	0.0180	1	
12.0	196	1,245	c)	n,0180	$\mathbf{x} \leftarrow \hat{\mathbf{x}}_{i}$	48.73
13.0	207	14.45	7.00	0.6169		
14.0	217	1855	7.54	0.0160	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 4
15.9	227	1875	8,27	0.0154	" A	, a

MANNING COEFFICIENTS to the

CAL 5/27/21

DLS " 5/27/81

The state of the s

$(a_{n,n},a_n) \cdot (a_n^{n-1}) \cdot (a_{n,n},a_n) \cdot (a_{n,n}^{n-1}) \cdot$

Political Control of the early

H FYX	12 (FI)	<u>(SQ-F1)</u>	T. T. J.	CETALITY	V Organization	* 1 <u> </u>
	n 1	7,72,	u 900	9.09.00	111	
C . (1		33 U	1.51	0.0380	11.0	
#11 . 4	53		2.10	0.0189	$\alpha_{i} = \gamma_{i}$	A
1 1 · ()		1,54		p (1)30	9	1.1.
12.B	7.7	211	1.72		4	2.7
13.0	9.0	\$41	A.28 '	0.0180		
14.0	102	4809	3.03	0.0150	en , j. H	
nerv nerv	114	4/97	4 36	(* 0189	er, ***	+ + 1 + 1

PRADE THE COURT OF PROPERTY OF THE

SAL SING

End Since the term

terrent arrent errent i de la persona de la companya de la companya de la companya de la companya de la companya

and the speciment's state of

16000 1000 1000

	(A - 17	A PERMIT			$(\underline{H}_{i},\underline{H}_{i},\underline{S}_{i},\underline{G}_{i},$		
 	je Pa	11) (i) AL	(4		Comment	
1 9	4 9		. •	1.1			
2.00	27.	f.		¢ι ^{γ.,}			
0.00	7.57	d	77.3	2 1 4 40 h	• •		
L; , įi	5.34 ()	11	1.49 (1	La Vali 3		*1	
њ. , Й	217	1.1	- 1 G	24.4			
é, H	A 1 (1)	(1	1.1	i profe	11		
,' ()	Li Li Ca	11	44 J. P.	1777			
8 (i	Tjr (. 1)	()	1, 3	The Theorem			
\circ , 0	7 C 10		in the same	201	4		
1 11	8.25	\$ 10	40 to 12		•		
11.0	1.955	1.19	* * * * * * * * * * * * * * * * * * *				
12.0	1.24(5)	11.5	\$4.50	.11(5.4)	1.0		
13.0	<u>1</u> եր եր ^{լո} ւ	14	1.747	100	v. ()		
14.5	1 Activit		, (a) %	12500		•	
15.0	1875	·i · · · ·	18 18 N	E 2 2 7	•		

Change Control of the C

On the control of the c

MICROCOPY RESOLUTION TEST CHAR1
NATIONAL BUREAU OF STANDARDS 1967 4

•

BY FAM. DATE 5-27-81	ROALD HAESTAD, INC. SHEET NO. DF OF
	RYCIR NO.4 - FLOOD ROUTING
,	· · · · · · · · · · · · · · · · · · ·
SECTION NO 5	
	A . B . 1" = 100' HORZ
N(A)=0.1 N(B)=0.08	
	ROUTE 72
16	
12 10	
8 6	
2	
5	
	DISCHARGE 1000 CFS
77 16	
14	
0 6	
8 -	
	25
	AREA 100 50 FT
· Landard - Landard da da Labara - 1 (- 1	D-23

for the second second

of the grant of the property of the state of

CONTRACTOR TO THE

pd	1.4	15	11	$\mathfrak{Sl}_{\mathbf{q}}$	1,0	f ?
<u>(+7)</u>	(<u>L.Y.</u>)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64 1.2	ir i srija	(*) (*) (*) (*) (*)	(11/2)
3.0	6,574	t _{trie} ,	11 17 11	D. (E0) 211	H 1, 4	J.
2.0	112 4	£ *0	$t \in 0.0$	H . H (F2)4	1	1
7.66	2775	1 1:	7 (1	0.0000	1	* 50 pm
4 . 1)	24.8	* 1	1, 11	0,0094	* * * * * * * * * * * * * * * * * * * *	147.
") , (r	416	Y (***)&:	11 6 11	$0 = 0 \approx 24$	a - 10 P	i Calla
ō. 0	4, 77 (B)	1501	3.23	0.00004	1 177	41 11
7.0	545	2000	1 1 6	0.0029	1 . 1 .	· ** () ()
8.9	613	2031	h.29	0.0024	1.9.	* , 11 , . * :
9.11	680	3 75 77 77	0.92	0 , 0.029	7 (10.5)	$\rho_{\rm s}(S_{\rm tot}) =$
10.0	746	3881	5, 54	0.0024	4.5	111 11 1
31.0	815	#772	5.56	(i., (j.)), j.u.	.". vm	. 1 526
12.0	883	5621	8.37	0.024	* = +11	14.55
13.0	W.E. 3	8537	A,88	0.0024		
14.0	1033	7520	7 20	0.0024	2 79	111. 11
15.0	3116	8.607	7 71	0.0624	21,000	144,44
la, 0	1179	¥75¥	0.14	0.0024	27 (21)	
17.0	1281	: 0003	6.59	0.0620	$\lambda_{+}w_{+}$	Aug 12
18.0	1363	1310	9.04	0.0024	5 17	1.122.0
19.0	1446	13723	y 4 9	(a., 0.01,24)		1.31.15
20.0	1528	10044	9,05	0.0024	1. 1.	1.4

- mategas presentatewinem.1000

CONTRACTOR OF FAIGURESS 945 OF CASA

LEASTH OF REACHELS LAWS OF

INFLOU INTO REACH=SP1= 10835 - 118

DEPTH OF FLOW-MIH 10.0 F). CHOSS SECTIONAL AREA=41= 4677 SQLT.

170.0 00 11. STORAGE IN REACH=V1=

TRIAL REACH OUTFLOS= (TRIAL)= 8897 U.S.

TRIAL DEPTH OF FLOW=H(TRIAL)= 10.016.

TRIAL CRUSS SECTIONAL AREA=A(TRIAL)= 3990 SOLE).

TEIGL STURAGE IN REACH=V(TRIAL)= 196.8 AC. FT.

REACH OUTFLOW=QP2= 9020 CIS

DEPTH OF FLOW=H2= 10.1 FT.

BY FAM DATE 5-21-81 CKD BY SALDATE 5-27-81. SUBJECT ERISTOL RESERV.	ROALD HAESTAD, INC. CONSULTING ENGINEERS 37 Brookside Road - Waterbury, Conn. 06708 OIR NO 4 - FLOOD POUTING	SHEET NO Z. OF OF		
SECTION NO. 6.		SCALE; I" = 900' HORZ I" = 90' VERT L=1.600' S=0.0024 N=0.1		
	DISCHARGE - 1000 CF	40 50 6C 5.		

AREA -1000 SO.FT.

PROBLEM CONTROL OF A STATE WAS ASSESSED. AN ADMINISTRATION OF PROBLEM CONTROL OF A STATE OF THE PROBLEM CONTROL OF A STATE OF THE PROBLEM CONTROL OF THE PROBLEM

Land Committee of the C

Aller a telephone

ŀ1	t.J	F_1	F	Ç,		:
(FT)	(FI)	<u> SO-FID</u>	1 1 1 1	STEELS.	to the table of	1.1
1.0	4. ()	20	n Se	6.0034	11 - 11 - 1	
2.8	8.0	Θ (1	1.00	# . U D (41	10.00	
¥ , 4	119	179	1.150	0.0024	14 12:5	1
E ()	a 5/9	318	21, O3	0.0024	4 . 1 .	4
5.0	199	497	27 - B. L.	0.0024	1.74	m (N.S.
6.0	229	716	(s), f(4)	0.0024	1.51	1 18
7 8	279	974	3.50	0.0024	1,58	i o. it
8.0	(X, 1, C)	3 7/7/20	3.99	0.0024	1.0.	
9.0	405	1632	i, jš	0.0024	1 , : 10)	19 (4)
10.0	14 i ()	2053	0.67	0.0024	9.00	4, 1, 1, 1, 1
1.1.0	u75	2510	5-29	0.0024	1.11	1.0
12.0	510	3002	C. 1111	0.0024		1 24
13.0	545	3529	8.447	0.0924	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
) I/ ()	E C)	4091	7. 0°5	0 0024		14 301.
15.0	616	4689	7.51	0,0024	7 ()	
16.0	651	5321	$O_{-} + 1$	(- (-() 29	1	4.1
17.0	58 6	5989	8.75	0.0624	4 1111	
19.0	721	6692	(3) ∫ Ω;	$0 - 0.0 \odot 4$		

MANNING COEFFICIENT=N=0.juns

STORAGE AT TIME OF FAILUREES- FOR ACT FOR FOR

TMFLOR 3000 REACH=QPJ= 9000 FEC ULPIH OF FLOW=H1= 13.0 FT.

CROSS SECTIONAL AREA=A1= 30th sq.ft. STOPAGE IN REACH=V1= 170.9 Ac. et.

TRIAL REACH (DOEDSTEDE TRIAL) = 7 AM LES IRIAL DEPTH OF HEREFUTRIALIE - 15.0 FT.

TRIAL CROSS SECTIONAL CONASCIPIAL) = 3000 SQ.FT.
TRIAL STURAGE TO RECCHEVITGIAL) = 185.3 oc. Ft.

EFACT DUTSLOS GPD= 7/93 (FS DEPTH OF FLOW=H2= (F) FT.

BY FAM	DATE 5.7	2/-8	3.1.	••
- 11			_	,

ROALD HAESTAD, INC. SHEET NO OF

CONSULTING ENGINEERS

CKD BY SALDATE 5-27-81

37 Brookside Road - Waterbury, Conn. 06708

JOB NO. 049 -045

SUBJECT BRISIOL RESERVOIR NO 4-FLOOD ROUTING

A DOMESTIC CONTRACTOR OF THE STATE OF THE ST

which the their a

POTAL SECTION

[-1	(J	r A	12		1.	Ü
<u>: E. I. 1</u>	<u>(</u> F3)	<u> (1971)</u>	(F.3.)	(FIZE))		· h
ï 6	3.0	4.5	1 * - 1.	0.0100	11 11 4	ι.,
	č. ()	# . U	1.00	0.0100	1 (1.7)	1.17
3.0	ς_{γ_0}	3.16%	1 EH	0.010100	1 1/1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
t4 , 3)	120	2/4/ ()	7 (2.4)	a , $0 1 0 0$	200	Sition
£. (t	150	175	D. 40	5 9300	73	7.11, 1.
and the	181	trop O	1 1 4.0 11 1	(0.0910) H	,* #\$	1
	211	735	1. júj	0.0400	3.91	20 d
$\Theta \circ 0$	244	500	5.09	9.0190	Al	1.00
S . G	271	and a gradual and a second	11 11 1	0.7.00	4 (14	1, 1
16.0	医母亲	1500	$\mathbf{u}_{k,j} \in \mathbb{R}$	# . # ! ! () ()	ta jugita	
3.4 . 0	346	1873	$\frac{\mathbf{E}^{\prime}}{2}$ $\mathbf{e}^{-\frac{1}{2}}$ $\mathbf{e}^{-\frac{1}{2}}$	0.0100	4 , 5 (1)	
1.2.0	391	27.70	U	0.0100	# w	(c ₁ ,
33.0	436	2261.3	50.00	θ , θ θ θ	10 700	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(u., 0	481	3030	D 36	0.0100	5:, 11)	100
: 5 - 0	526	J. C. O.	6.77	D : 0 * 0 f	1	
15.0	571	4110	7.19	i jijiji	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

MANNING COEFFICIENTS FIND

STORAGE AT TIME OF FALLURGES THE ACTION

LENGTH OF PEACHTLE 2000 FI

CROSS SECTIONAL AREAMAIN 75.88 AC FI. STOPAGE IN REACHEVIE 75.8 AC FI.

TRIAL REACH OUTFLON=OP(TRIAL)= 6709 CFS
TRIAL DEPTH OF FLOMEHITRIAL)= 15.1 FT.
TRIAL CROSS SECTIONAL APEASA(TRIAL)= 1509 50.1.1.
TRIAL STORPOS IN BLICHSV(TP)= 10.1.7 GP 51.

REACH OUT (GU=0)2+ 5728 (FA REFOR OF FLOW=62+ 75.1 53. ROALD HAESTAD, INC. SHEET NO. 15. OF CONSULTING ENGINEERS

CKD BY SAL DATE 5-27-8/.

37 Brookside Road - Waterbury, Conn. 06708 JOB NO. 049-044

SUBJECT RRISTOL RESERVOIR NO 4 - FLOOD ROUTING

DLS HATE 5/27/8/

CHESTALL REPORTS WITH THE PROPERTY AND A SECTION OF THE PROPERTY OF THE PROPER

SECTION OUR GER 9

TOTAL SECTION

H	Ļ.J	Fa	<u> </u>	\$1	V	
<u> 1612</u>	(FT)	(Summa)	(6.1.)	(FIZET)	THE COURT	1 3
3 . 11	28	j u	D 541	0,0037	± 711	
27 0	C; E;	607 65 5, 1 5, 1	医二种食	0.0687	$\frac{\alpha_1}{\alpha_2} = \frac{1}{2} \left(\frac{1}{2} \frac{\alpha_2}{\alpha_2} \right)$	
3 U	83	1 54	1.50	0.0057	** * *********************************	i
4.5	1, 1, 0	220	1.099	0.0087	3.34	2.5 41
5.0	138	<u> </u>	⊉,44.9	C.0087	3,74	11.50
\diamond , ϑ	165	ц 95	2.00	0.0087	4.11	2 f c 1 _ 1
7.4	193	674	3,49	0.0087	4.56	1) zy W
t) , ()	2000	880	3,99	0.0087	4,98	4135
9.0	24.8	1114	4.49	0 0087	5.30	347.00
10.0	276	1375	ų, 9×	0.0097	5.78	7 mm - 2
11 0	289	1656	5.74	0.0087	6.35	144.5
12.0	301	1950	6.47	0.0087	4 9.4	69.1
13.0	314	2256	7 15	0.0087	7.87	5 70 1
14.0	327	2575	7.88	0.6687	7. 14.3	9.44
15.0	339	290a	$\{(i,j,j)\}$	0.0087	8 19	* : :

MANNING COEFFICIENT-N=0.0700

STOPAGE AT TIME OF FAILURESS 945 AC 15

LENGTH OF REACH=L= 3000 FT

INFLOW INTO REACH=OPI= 6728 (F)

5 . H . + 7 . DERTH OF FLOWERSE

CROSS SECTIONAL AREA=Al= 1212 SQ.LT.

STORAGE IN REACH=V1= 83.4 AC. FT.

TRIAL REACH OUTFLOW=QP(TRIAL)= 6134 CFS

TRIAL DEPTH OF FLOW=H(TRIAL)= 9.1 FT.

TRIAL CROSS SECTIONAL AREA=A(TRIAL)= 1132 SC.FT.

TRIAL STORAGE IN GRACH-V(TRIAL) = 77.9 AC. FY.

REACH OUTFLOW=GP2= 6154 CF5

DEPTH OF FLOWERS: 9.1 FT.

BY FAM DATE 5-1-3/ ROALD HAESTAD, INC. SHEET NO GO OF CONSULTING ENGINEERS CKD BY SALDATE 5-27-81 JOB NO 049-045 37 Brookside Road - Waterbury, Conn. 06708 SUBJECT BRISTOL RESERVOIR NO 4 - FLOOD ROUTING SCALE . 1"= 100' HORZ 1": 20' VERT L= 3000' .5:0.0087 15

SAL 5/27/81

DLS 5/27/81

Magnetic and the control of the property of the control of the contr

Company of Million (2007)

mary CHArbutL

i-1	i.J	€.	₩	\$1	V	10
(11)	2 F 1 2	1 = 1 + 2	(£))	(6.15477	A 1 1 2 2 3 1 1 2 2	
3.0	1.13	•>	U.50	(111:4)W	1 4 .	! :
2.0	β.t. c	ra ^{tt} i f	$\int_{\mathbb{R}^{N}} dx = \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} f(x) dx$	$H = \{1, 1\}, L_1$	· · · · · · · · · · · · · · · · · · ·	1.11
3 . ð	#FC 15	/ Q	1.49	$W = \{\{H(E),C\}\}$	1 . j . j . i h	120
4.0	7.0	3 44 (1	1 CO	0.0000	c. 1	4 Feb. 2
5.0	08	2.17	2,40	0.059	11 . 1	!
6.0	106	X ; 5;	2018	a , a a 5	11 , 1.	7.5
7.0	123	$a \odot \phi$	$\Delta \approx 0.03$	0.050	11, 11	**
8 0	141	Sec. C		G. Gillia		
9 . 0	150	7 () ⁽²⁾	4.7	9,000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
10.0	176	() **** () () () () () () () ()	4; C ",	U. 605.9	to profit	Section .
11.0	179	1050	0.88	$C = C \cup C \cup C$	\mathcal{T}_{+} t_{4}	717.1
10.0	182	1230	15 / C	(r = 0 () ±.5°	11 , 1 r	1000
13.0	184	1411	7.00	3.0059	*******	111111
14.0	187	1595	0 : 5 3	0.050	C. C. S.	12.24
15.0	190	1781	위, 값의	$9 \cdot 9.05\%$	10.1.	177.0
16 C	192	1970	10,24	0.0009		x
17.0	195	?(4.51)	. 11 . 03	$\theta = \theta n \mathbb{D} \mathbb{P}$	# 1	$\int_{\mathbb{R}^{n}} H_{n}(\xi, t_{n})^{-1}$
38.0	198	2355	11.91	0.059	10.55	12 (14 (00))
19.0	200	25	12.73	0.0059	Land Co	31 C 16
0.0	2,03	1.750	12.54	0.055	4 1 - +1.	T. C. 10

Martyjana COEFFICIENTENES, 1100

SAL : 5/27/31 E2 ~5

The second of the second of the second

English Control Philipper

H	IJ	Éi	1 1	į	*	1
CET 1	(FT)	CSQCE 1	<u>. F. 1</u>	<u> </u>	. 1 1	* * *
4 g - p	52	4.9		L 075		
2.22 0	eje.	102	1	10 y 41 fg - 17	411	.1
13.0	56	152	A to	$C_{i,j} \in C^{1,j}(\mathbb{R}^{d})$	1 44.	211
1.0 0	61	217	3.59	U , H () 1 / 1	6 , 54	111.
35.U	63	278	4.39	0.0659	4.12	1.74
10.0	⊘ ⊙	24 T	5.17	0.0059	(-, 9.)	377. 1
17.0	69	4 (18:	5.93	0.0059	\mathbb{M}_{+} \mathbf{H}^{M}	.2 (+1)
18.0	7.1	476	5.67	0.6659	14,445	21221
19.0	74	E.P. ()	7.38	0.0059	(1 A)	$t_{1-T} + \tau$
20.0	77	#111	0,40	0.005	. 1.	0.44

MANNING COEFFICIENTERS, 0500

÷.

. The object the object is a second constant of the second constant \hat{x}_{ij}

Contact Carrier of the English

or cody of the state

	K. R. C. Carlotte, J. Phys.			$(\mathbf{F}_{\mathbf{p}}, \mathbf{F}_{\mathbf{p}}, \mathbf{A}_{\mathbf{p}}, $		
!	φ.) 	\mathcal{V}	119161	Ü		
1.0	N ,	(I	(_c)	1.3		•
20	25	١١	6.1	2411		
5 ú	75	ī	. 4	2.25		
4.0	140	11	4.00.4	$v_{e^{i\gamma}Q}$		
\$1.00	219	(I	104.00	C+4 Z	1	
5.0	315	11	5.1.5)	14:22	1+	1 2
T, H	4.2°	1,1	Professional Control	2 J. W. S.	i	1
d, U	$\mathbb{S} \in \mathbb{C}$	1)	Maj, H	图 2010 7		
Ý,0	多数學	(1	1000	$L_{j}\rightarrow \gamma\gamma$		
10 0	(3.17.13 (3.7.13.13	Ú	333	58315		
11 0	1951	4.9	1100	7.136		
12.0	t 2 3 0	1.0.2	1350	10054		
3.35 ()	1411	(1 x z)	1000	12519		
] 4 , 1)	1595	. T 1 "?	1912	\$ 50.000	1.1	
150 0	1781	27.8	14.59	1 LE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
16.0	1976	311 /	2311	21.2412		
17 6	2161	11 11 (d	2549	745V		
1 + 10	2355	41.75	2831	26944		
59.0	2051	[14]	S (1 4.1 4)	A 3 TO C. E.	er jar	
0.4	$r_{ij} = r_{ij} r_{ij} r_{ij}$		3371	"Yak yakara		

A Grand Control of the HALL Report for a superior of the superior

TREETH OF FLOWERS OF THE PROPERTY OF THE PROPE

TRIAL PROCESS (COFFICHEUP (TRIAL) = 1000 PERSON PRODESTRIAL) = 1000 PERSON PROCESS (TRIAL) = 1000 PERSON PERSON PROCESS (TRIAL) = 1000 PERSON PERSO

BY FAM DATE 5-27-81	ROALD HAESTAD, INC. CONSULTING ENGINEERS 37 Brookside Road - Waterbury, Conn. 06708	JOB NO 140 - 145
SUBJECT . BEISTOL . RESERY.	OIR NO 4 - FLOOD ROUTING	
SECTION NO 10	ROUTE 72	ECALE 1" = 100' HORZ 1" = 20' VERT L= 1300' S = 0.0050 N(A) = 0.05 N(B) - 0.05
18 18 16 10 10 10 10 2		
14 OF FLOW - FEET 7	DISCHARGE - 1000 CFS	15
4	AREA - 1000 SQ F 7.	2

572 5,07,87 5-2 5,07,87

 $\mathcal{L}_{\mathcal{A}} = \{ \boldsymbol{\epsilon} \in \boldsymbol{\mathcal{A}} \mid \boldsymbol{\epsilon} \in \boldsymbol{\mathcal{A}} \mid \boldsymbol{\epsilon} \in \boldsymbol{\mathcal{A}} \mid \boldsymbol{\epsilon} \in \boldsymbol{\mathcal{A}} \}$

Property of the state of the first

11.16	7.	;		W	
	a stoka		* 1 . 1 . 1 . 1	1. 1	i
		1.14		• .	
	1				
200	1	120	Professional	1 1	*
	100	· tri	6 9 F		
	* 4	\$ 100 M	11 11 11 11	44 - 14.	

(2) Marchael Code (Edita Paragraphics) (e.g., 1993).
(3) Marchael Code (Edita Code) (e.g., 1993).
(4) Edita Code (Edita Code) (e.g., 1993).

ではもPED COLE THE RESPONDENCE TO THE SECOND OF THE SECOND

A. C. Sanda, A. C. Sanda, C. C. Sanda, C. Sanda, C. S. Sanda, C. S. Sanda, C. S. Sanda, C. S. Sanda, C. Sanda, C.

The production of the state of

BY FAM DATE FELL OF CKD BY SALDATE 5-27-31	ROALD HAESTAD, INC. SHEET NO. 50 DF. OF. CONSULTING ENGINEERS 37 Brookside Road - Waterbury, Conn. 06708 JOB NO. 44-45
SUBJECT BRISTOL RESERV	IUIR NO 4 - FLOOD ROUTING
SECTION NO II.	
	ROUTE 72) L= 3.000' S= 0.0044 N= 0.06
2 - WOH 4 - CEE 1	SWAMP)
	5
DEPTH OF FOW -FE	
	AREA = 1000 SO FT

D-37

EFL 5/27/31

 $(x,y) \in \mathbb{R}^{n} \times \mathbb$

 	i	1		,	2.	٠.	1.

1;	6.3		} •	<u>V</u> .	1. ř	
1.	(FI)	$\lim_{n\to\infty} \int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) dx$	1	41 1 4 E E 12	Charles and the	
1.1	1 m	(1)	42 Miles	1(14.1)	;	
	3.4 %	200	1 25	11 (14 h)	· ·	
Š v	1 7 L	t.j. 🍦	5 , 24	11 - 13 17 17 41	, * · · · · · · · · · · · · · · · · · ·	:
(18.2		% - \$100	1000 000		1
1.	196		4.43	0.0000	•	
A 11	198	1.113.1	t	H. HUNTER	200	
12.	dive	7-1-1-5	1. 48 to	10 . 11 11 () 17		•
£2 (1)	17 (9)	147.0		Production of	4.5	
w jij	217	i Ali u	7 (91)	0.060 ± 0.0	1000	4.9 -
· 1: (i	3/1/14	a Return	¥	ti (11.1)		

HOLD With Committee I INTERNOUS COOR

EAL 5/27/31 DIS 5/27/31 £ . -

the district of the second second

the grown of decided to be a pro-

A Bridge State Office

1 K	3 ¹	# 15 	1.3		$Q_{n}^{(k)} = \operatorname{col}(n)^{-k}$	ti clir
	1	200	, ,	the terms	1.	2.4
7.0	****	1.0	1 60	. , útrati	1.734	2.00
				L. Herbelt	, ! i ki	9.15
±1 . 1! 1 14 . 19	e, la este	1.5		A. A. Harrison	* * *	2 - g 6

Construction of the first the week construction

(Zu ------

The second The Francisco Contractor

A Committee of the Comm	e to the second of the second	
The second of th		
10 14A 0 O ₁ (1) 11 10 307 0 507 6.77 10 0.76 0 0.07 12.77 50.0 653 0 653 20.13 50.0 653 0 653 20.13 50.0 653 0 653 20.22 50.0 1031 4066 4067 50.0 1031 4066 5380 60.0 1031 4066 5380 60.0 1032 1033 406 1036 60.0 1640 177 141 854 60.0 1853 250 7075 16036	7 0 0 0 0 0 0 0 4 20 70 4	easter Software Software Software
STURME AT TIME OF FAILURE CONTINUES OF LEMENT OF STATES. INFLOW INTO REMINDED TO DEPTH OF FLOWERS. UPDSS SECTIONAL AREASATE STURME TA REACHEVIE STURME TA REACHEVIE TO STURME TO TELEVICIONES OF THE STURME OF THE STURME OF THE STURME OF THE STURME.	Sefection of a second	

DAM DATE 5-21-81	ROALD HAESTAD, INC. CONSULTING ENGINEERS 37 Brookside Road - Waterbury, Conn. 06708	JOB NO. 149-145
BJECT . <i>BRISTOL RESERM</i>	'QIR NO 4-FLOOD ROUTIN	<u> </u>
SECTION NO 12		SCALE.
	$A B \rightarrow$	1"=100 HORZ 1"= 20' VERT
	ROL	L = 2000 N(A) = 0.08 TE 72 N(B) = 0.08 S = 0.005
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
5		
2 - 2		
	5	10
L L	DISCHARGE - 1000 CFS	
3 9		
7 6		
11030		
		2.,
	AREA-1000 SO FT	

Appropriate the second second second second

set in a form a plane to the first

Other Miles And Comme

H (E):	11 12 1 1	ea : 2:14m f (1) /	V. • ₩ T	$\frac{V_{ij}}{\sum_{k=1}^{n} \left(1 - \frac{N_{ij}}{n}\right)^{n}} = \frac{V_{ij}}{\sum_{k=1}^{n} \left(1 - \frac{N_{ij}}{n}\right)^{n}}$	V Company Communication	e to the second
1 : 0 2 : 0 9 : 0 9 : 0 9 : 0 9 : 0 9 : 0 10 : 0	200 40 50 50 527 543 533 201	0.1 0.2 0.3 0.3 0.3 0.4 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	# CD 1 - ## 1 - #\$ 1 - 9 + 2 - 1 + 3 - 1 + 4 - 3 + 4 - 3 +	6.63 c 6 4.63 69 6.64 69 6.64 69 6.64 69 6.65 69 6.65 69 6.65 69 6.65 69 6.65 69	5.96 4.74 5.16 7.65 6.65 7.74 10.80 (4.56 7.75	

MARKERS CHEFFICELRY CRESS, in Co. STOREGE AT TIME OF FAILURESS AND FOLLOWING FOR

INC.DS INTO PERCHENPIES NOVA COLO DEBARE OF FORMAL : in it is STOWAGE JA REGENEVIE - 1000 - CROSS SECTIONAL APLAMA, =

TRIAL REACH OUTCOON ON THE THE HART - TO TRIAL DEFIN OF THE BEST OF THE CROSS SECTIONAL ADDRESS SECTIONAL ADDRESS OF THE CONTRACT OF TH TRIAL STORAGE IN REACHEVETRIAL OF The same of the St.

REACH OUTFLOJERP - # 4000 - 1100 DEETH OF FLUMENCE

BY PAM DATE STY-61	ROAL
	CC
CKD BY A DATE	37 Brooks

D HAESTAD, INC. SHEET NO OF DISULTING ENGINEERS

37 Brookside Road - Waterbury, Conn. 06708

BY SAL DATE 5/27/81 ROALD HAESTAD, INC. SHEET NO 5 OF CONSULTING ENGINEERS

CKD BY DESDATE 5/27/9 37 Brookside Road - Waterbury, Conn. 06708 JOB NO 49-6-5-5

SUBJECT BRISTOL RESERVOIR NO. 4 - Outlet Proing Capacity

Hond losses: 1) Friction f 40 Vilg

2) Entrance - projecting KVilg (K=1)

3) " - flush KVilg (K=0.5)

4) Gate Volve KVilg (K=0.25)

12" CIP @ EL 836.5: 2,+ P/8+ V/2g = Zz+P2/8+ V2/2g + H2,-2 19.5+0+0=0+0+ V2/2g + [25f+1+0.25] V2/2g 19.5 = (25f+2.25) V2/2g

 V_{z} assumed = 10 f/sec -> f = 0.0375 ... $V_{z} = 19.8$ f/sec -> f = 0.0365 ... $V_{z} = 19.9$ f/sec $V_{z} = 19.9$ f/sec $V_{z} = 19.8$ f/sec

12" CIP @ EL 826.5: 29.5 = (45f + 2.25) 12/29

> Yz assumed = 20 f/sec -> f=0.0365 :. Vz = 22/1/20 " = 22 f/sec -> f=0.0364 :. Vz = 22/1/20

> > QTOP OF DAM . VZA = 22.1 ("")4) = 17 cfs

20" CID @ EL BIG. 5: 39.5 = (39f + 2.25) Ving

> Vz Assumed = 25 ft/sec -> f = 0.0350 : Vz = 26.5 fixec " = 26.5 ft/sec -> f = 0.0350 : Vz = 26.5 ft/sec

> > QUOP OF DAM = AVZ = (7-(3/2)/4) 26.5 f/sec = 58cfs

BY SAL DATE 5/27/8/ ROALD HAESTAD, INC. SHEET NO DF CONSULTING ENGINEERS

CKD BY 5-5-DATE 5/27/8/ 37 Brookside Road - Waterbury, Conn. 06708 JOB NO 49-045

SUBJECT BRISTOL RESERVOR NO 4- Outlet Piping Capacity

 $\frac{20'' \text{ CIP } \text{ EL 816:} \left(\text{Outlet from Gatehouse}\right)}{\text{El, + }^{P}/\text{A} + V_{1}^{2}/\text{g}} = \text{Zz} + {}^{P}/\text{A} + V_{1}^{2}/\text{g} + \text{Hz}_{1} - 2}$ $40 + 0 + 0 = 0 + 0 + {}^{V}/\text{zg} + \left[\text{G6f + 0.5}\right] {}^{V}/\text{zg}$ $40 = \left(\text{G6f + 1.5}\right) {}^{V}/\text{zg}$ $V_{2} \text{ assumed} = 20 \text{ f/sec} \implies f = 0.0350 \text{ i. } V_{2} = 26 \text{ f/sec}$ $= 26 \text{ f/sec} \implies f = 0.0350 \text{ i. } V_{2} = 26 \text{ f/sec}$ $Q_{TOP} \text{ OF DAM} = V_{2} \text{ A} = 26 \left({}^{T}/\text{cg} \right) {}^{J}/\text{4} \right)$ = 57 cfs

BY DATE	ROALD HAESTAD, INC.	SHEET NO 5 OF
CKD BY 584 DATE 5-27-8/	CONSULTING ENGINEERS 37 Brookside Road - Waterbury, Conn. 06708	JOB NO
SUBJECT RESTEL FESTE	1214 NO. 4 - POLETA MARE	

PLANIMETER REKINNGS: (SCALE: /" = 2000')

Water Surface		43.59 42.73 42.27	Sa. W.	C.44 C.46	40.4 XICPES
WATERSHED	THIRD FIRST START		SD./N		1167 ACPES = 1.78 20.411.
<u> Coutour 860</u>	THIRD FIRST START	16.55 15.32 14.68	Sa. 111		57.2 ACHES

APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS

NOT AVAILABLE AT THIS TIME

